Advertisement

Luminescence of long-persistent Ca2MgSi2O7−1.5xNx:Eu2+,Dy3+ phosphors for LEDs applications

  • Jia Zhang
  • Wenbo Chen
  • Guibin Chen
Article
  • 5 Downloads

Abstract

A series of Ca1.97MgSi2O7−1.5xNx:0.01Eu2+,0.02Dy3+ (0 ≤ x ≤ 0.7) phosphors were prepared by solid-state reaction method, and the long-persistent luminescence properties were studied for LEDs application. XRD analysis reveals that the introduction of N element doesn’t cause obvious impurity phase in the phosphors. Smooth particle surface is obtained with the assistance of H3BO3 flux. Different Eu2+ emission centers have been verified via the luminescence spectra. By monitoring 535 nm, the excitation spectra of the phosphors cover a very broad range from 240 to 500 nm, which can match the LED chip well. When the N is doped, the emission intensity of Eu2+ can be increased largely at first, but is weakened if the N concentration is beyond x = 0.28. However, the long-afterglow time of Eu2+ starts to decrease when the N concentration exceeds x = 0.07. The corresponding afterglow mechanism is explained by the thermoluminescence curves and proposed model. By studying the temperature-dependent luminescence, it has been found that introducing N can increase the activation energy, but the thermal stability property needs improving in the further work.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51602117) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJA140001).

References

  1. 1.
    T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, X. Xu, J. Phys. Chem. C 119, 14047–14055 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Abdukayum, J.T. Chen, Q. Zhao, X.P. Yan, J. Am. Chem. Soc. 135, 14125–14133 (2013)CrossRefGoogle Scholar
  3. 3.
    W. He, T. Atabaev, H. Kim, Y. Hwang, J. Phys. Chem. C 117, 17894–17900 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Jin, Y. Hu, L. Chen, G. Ju, H. Wu, Z. Mu, M. He, F. Xue, Opt. Mater. Express 6, 929–937 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Fan, X. Xu, X. Yu, W. Chen, D. Zhou, J. Qiu, Mater. Res. Bull. 99, 398–402 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Zhuang, J. Ueda, S. Tanabe, J. Mater. Chem. C 1, 7849 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Tian, L. Zhao, W. Chen, Z. Liu, X. Fan, Q. Min, H. Yu, X. Yu, J. Qiu, X. Xu, J. Lumin. 202, 414–419 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Wang, H. Lin, Y. Yu, D. Chen, R. Zhang, J. Xu, Y. Wang, J. Am. Ceram. Soc. 97, 2539–2545 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, J. Bierwagen, J. Lumin. 170, 299–304 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Wang, Y. Gong, X. Xu, M. Zhou, Opt. Express 18, 24853–24858 (2010)CrossRefGoogle Scholar
  11. 11.
    G. Li, W. Chen, Y. Wang, B. Duhan, Dyes Pigment 157, 259–266 (2018)CrossRefGoogle Scholar
  12. 12.
    T. Wang, W. Bian, D. Zhou, J. Qiu, X. Yu, X. Xu, Mater. Res. Bull. 74, 151–155 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Fu, S. Zheng, J. Shi, Y. Li, H. Zhang, J. Lumin. 184, 199–204 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, W. Wang, J. Zhang, X. Ji, J. Li, J. Liang, S. Peng, Z. Ci, Y. Wang, Opt. Express 6, 1186–1197 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Chen, Y. Zhang, S. Xue, X. Deng, L. Anqi, F. Liu, Y. Jiang, Funct. Mater. Lett. 6, 1350047 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, Z. Zhai, Z. Hua, Mater. Res. Bull. 74, 34–40 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Han, X. Xie, J. Lian, Y. Wang, C. Wang, J. Lumin. 176, 71–76 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Xie, F. Zhang, G. Li, W. Zhang, Ceram. Int. 43, 12026–12034 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Fu, W. Lu, M. Jiao, H. You, Inorg. Chem. 55, 6107–6113 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, C. Jiang, Mater. Res. Bull. 60, 467–473 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Zhang, B. Liu, J. Alloys Compd. 542, 276–279 (2012)CrossRefGoogle Scholar
  22. 22.
    F. Zhang, Y. Wang, Y. Tao, Mater. Res. Bull. 48, 1952–1956 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Zhang, J. Wang, W. Ding, Q. Zhang, Q. Su, Opt. Mater. 30, 571–578 (2007)CrossRefGoogle Scholar
  24. 24.
    L. Jiang, C. Chang, D. Mao, C. Feng, Opt. Mater. 27, 51–55 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Zhang, H. Yamada, N. Terasaki, C.-N. Xu, J. Electrochem. Soc. 155, J55 (2008)CrossRefGoogle Scholar
  26. 26.
    Q. Fei, C. Chang, D. Mao, J. Alloys Compd. 390, 133–137 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.-K. Su, Y.-M. Peng, R.-Y. Yang, J.-L. Chen, Opt. Mater. 34, 1598–1602 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Marí, K.C. Singh, M. Moya, I. Singh, H. Om, S. Chand, Opt. Mater. 34, 1267–1271 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.C. Wu, D.Y. Wang, T.M. Chen, C.S. Lee, K.J. Chen, H.C. Kuo, ACS Appl. Mater. Interfaces 3, 3195–3199 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Gong, Y. Wang, Z. Jiang, X. Xu, Y. Li, Mater. Res. Bull. 44, 1916–1919 (2009)CrossRefGoogle Scholar
  31. 31.
    Y.-J. Ouyang, L.-L. Tang, F. Wu, J. Mater. Sci.-Mater. Electron. 28, 12711–12716 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Jiang, C. Chang, D. Mao, J. Alloys Compd. 360, 193–197 (2003)CrossRefGoogle Scholar
  33. 33.
    Y.-K. Kim, S. Choi, H.-K. Jung, J. Lumin. 130, 60–64 (2010)CrossRefGoogle Scholar
  34. 34.
    W.-J. Yang, L. Luo, T.-M. Chen, N.-S. Wang, Chem. Mater. 17, 3883–3888 (2005)CrossRefGoogle Scholar
  35. 35.
    Y.X. Gu, Q.H. Zhang, Y.G. Li, H.Z. Wang, J. Alloys Compd. 509, L109–L112 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, B. Ji, Z. Hua, Opt. Mater. Express 6, 3470–3475 (2016)CrossRefGoogle Scholar
  37. 37.
    V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Chem. Mater. 21, 316–325 (2009)CrossRefGoogle Scholar
  38. 38.
    G. Blasse, J. Solid State Chem. 62, 207–211 (1986)CrossRefGoogle Scholar
  39. 39.
    H.A.A.S. Ahmed, H.C. Swart, P. Bergman, R.E. Kroon, Mater. Res. Bull. 75, 47–50 (2016)CrossRefGoogle Scholar
  40. 40.
    X. Ding, Y. Wang, Acta Mater. 120, 281–291 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Huang, X. Zhang, J. Pan, Solid State Sci. 63, 9–15 (2017)CrossRefGoogle Scholar
  42. 42.
    D. Cooke, B. Bennett, R. Muenchausen, J. Lee, M. Nastasi, J. Lumin. 106, 125–132 (2004)CrossRefGoogle Scholar
  43. 43.
    T. Wang, X. Xu, D. Zhou, Y. Yang, J. Qiu, X. Yu, Inorg. Chem. 55, 894–901 (2016)CrossRefGoogle Scholar
  44. 44.
    T. Wang, J. Gou, X. Xu, D. Zhou, J. Qiu, X. Yu, Opt. Express 23, 12595–12604 (2015)CrossRefGoogle Scholar
  45. 45.
    Y. Gong, Y. Wang, X. Xu, Y. Li, S. Xin, L. Shi, Opt. Mater. 33, 1781–1785 (2011)CrossRefGoogle Scholar
  46. 46.
    X. Xu, Y. Wang, Y. Gong, W. Zeng, Y. Li, Opt. Express 18, 16989–16994 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Qiu, K. Hirao, Solid State Commun. 106, 795 (1998)CrossRefGoogle Scholar
  48. 48.
    R.J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo, Appl. Phys. Lett. 90, 191101 (2007)CrossRefGoogle Scholar
  49. 49.
    S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H.J. Seo, Inorg. Chem. 50, 2897–2904 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics department and Jiangsu Key Laboratory of Modern Measurement Technology and IntelligeHuaiyin Normal UniversityHuai’anChina
  2. 2.Engineering Research Center of New Energy Storage Devices and ApplicationsChongqing University of Arts and SciencesChongqingChina
  3. 3.Jiangsu Key Laboratory for Chemistry of Low-Dimensional MaterialsHuaiyin Normal UniversityHuai’anChina

Personalised recommendations