Advertisement

Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells

  • Anusit Kaewprajak
  • Pisist Kumnorkaew
  • Takashi SagawaEmail author
Article
  • 52 Downloads

Abstract

Silver–indium–sulfide (AgInS2) quantum dots in TiO2 was prepared to use as an electron transport layer of planar perovskite solar cell (PSC). The average value of the root mean square of the surface roughness of the electron transport layer was slightly reduced by the addition of AgInS2 into TiO2. The electron mobility of the electron transport layer was enhanced from 1.34 × 10−5 to 2.05 × 10− 5 cm2 V−1 s−1 after the addition of AgInS2. The external quantum efficiency (EQE) of the device with TiO2:AgInS2 was improved in the region from 300 to 750 nm as compared with that of the device without AgInS2. This result was separately caused by following two factors: one was the efficient light harvesting by AgInS2 in the region from 300 to 450 nm, and another was the improvement of the charge transfer from perovskite layer to TiO2 through AgInS2 in the region from 450 to 750 nm. Over 15% enhancement of the power conversion efficiency (PCE) of the PSC was achieved by the addition of 0.8 mg mL−1 of AgInS2 into TiO2. Storage of the PSCs with or without AgInS2 with encapsulation in air resulted in long stability for 200 days in terms of the PCEs, which were kept relatively 111% and 92% as compared with the initial values, respectively. Addition of AgInS2 into TiO2 brought the improvement of the durability against the photodegradation.

Notes

Acknowledgements

Anusit Kaewprajak also acknowledges to the Royal Thai Scholarship for his financial support. The authors appreciated to Asst. Prof. Dr. Navaphun Kayunkid of College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang for utilization of XRD and discussion about the crystallinity of quantum dots. Anusit Kaewprajak thanks to Mr. Khathawut Lohawet of National Nanotechnology Center, National Science and Technology Development Agency for his kind advisement on the preparation of perovskite solar cells.

Funding

This work was mainly supported by JSPS KAKENHI Grant No. JP17H035036 (Takashi Sagawa).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_691_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2663 KB)

References

  1. 1.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014)CrossRefGoogle Scholar
  2. 2.
    A.R.B.M. Yusoff, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. J. Phys. Chem. Lett. 7, 851–866 (2016)CrossRefGoogle Scholar
  3. 3.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Zhang, B. Yang, Y. Li, W. Deng, R. He, Extra long electron–hole diffusion lengths in CH3NH3PbI3–xClx perovskite single crystals. J. Mater. Chem. C 5, 8431–8435 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 11516–11520 (2015)CrossRefGoogle Scholar
  7. 7.
    W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park, J. Choi, Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2, 2667–2673 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462–11482 (2017)CrossRefGoogle Scholar
  10. 10.
    M.F.M. Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, A.R. b., M. Yusoff, J. Jang, M.A.M. Teridi, The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C 6, 682–712 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.-Q. Zhou, B.-S. Wu, G.-H. Lin, Y. Li, D.-C. Chen, P. Zhang, M.-Y. Yu, B.-B. Zhang, D.-Q. Yun, Enhancing performance and uniformity of perovskite solar cells via a solution-processed C70 interlayer for interface engineering. ACS Appl. Mater. Interfaces 9, 33810–33818 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Ruankham, T. Sagawa, Dopant-free π-conjugated polymers as hole-transporting materials for stable perovskite solar cells. J. Mater. Sci.: Mater. Electron. 29, 9058–9066 (2018)Google Scholar
  13. 13.
    Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang, Y. Yang, Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett. 17, 2328–2335 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, S. Dai, Enhanced performance and stability of perovskite solar cells using NH4I interfacial modifier. ACS Appl. Mater. Interfaces 9, 41006–41013 (2017)CrossRefGoogle Scholar
  16. 16.
    H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z.S. Louis, N.D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen, Y. Yang, Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives. J. Mater. Chem. A 3, 9108–9115 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Lv, W. Lv, X. Fang, P. Sun, B. Lin, S. Zhang, X. Xu, J. Ding, N. Yuan, Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv. 6, 35044–35050 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Ke, C.C. Stoumpos, J.L. Logsdon, M.R. Wasielewski, Y. Yan, G. Fang, M.G. Kanatzidis, TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138, 14998–15003 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Hou, X. Chen, S. Yang, Y.L. Zhong, C. Li, H. Zhao, H.G. Yang, Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy 36, 102–109 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Batmunkh, J.M. Thomas, J.S. Cameron, M. Bat-Erdene, Y. Wang, J.B. Mark, P.P. Ivan, T. Nann, G.S. Joseph, Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar cells. Adv. Sci. 4, 1600504 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li, S.F. Liu, Energy-down-shift CsPbCl3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2, 1479–1486 (2017)CrossRefGoogle Scholar
  22. 22.
    S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.-S. Lee, D. Kim, UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016)CrossRefGoogle Scholar
  23. 23.
    M.V. Khenkin, A.K. M, I. Visoly-Fisher, S. Kolusheva, Y. Galagan, F. Di Giacomo, O. Vukovic, B.R. Patil, G. Sherafatipour, V. Turkovic, H.-G. Rubahn, M. Madsen, A.V. Mazanik, E.A. Katz, Dynamics of photoinduced degradation of perovskite photovoltaics: from reversible to irreversible processes. ACS Appl. Energy Mater. 1, 799–806 (2018)CrossRefGoogle Scholar
  24. 24.
    W. Nie, J.-C. Blancon, A.J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M.A. Alam, M.Y. Sfeir, C. Katan, J. Even, S. Tretiak, J.J. Crochet, G. Gupta, A.D. Mohite, Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016)CrossRefGoogle Scholar
  25. 25.
    P. Kumnorkaew, Y.-K. Ee, N. Tansu, J.F. Gilchrist, Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays. Langmuir 24, 12150–12157 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Kumnorkaew, J.F. Gilchrist, Effect of nanoparticle concentration on the convective deposition of binary suspensions. Langmuir 25, 6070–6075 (2009)CrossRefGoogle Scholar
  27. 27.
    P. Kumnorkaew, A.L. Weldon, J.F. Gilchrist, Matching constituent fluxes for convective deposition of binary suspensions. Langmuir 26, 2401–2405 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Kaewprajak, P. Kumnorkaew, T. Sagawa, Improvement of photovoltaic performance of polymer and fullerene based bulk heterojunction solar cells prepared by the combination of directional solidification and convective deposition techniques. Org. Electron. 56, 16–26 (2018)CrossRefGoogle Scholar
  29. 29.
    T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, Facile synthesis of ZnS–AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129, 12388–12389 (2007)CrossRefGoogle Scholar
  30. 30.
    B. Liu, X. Li, Q. Zhao, J. Ke, M. Tadé, S. Liu, Preparation of AgInS2/TiO2 composites for enhanced photocatalytic degradation of gaseous O-dichlorobenzene under visible light. Appl. Catal., B 185, 1–10 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Han, Z. Liu, K. Guo, J. Ya, Y. Zhao, X. Zhang, T. Hong, J. Liu, High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells. ACS Appl. Mater. Interfaces 6, 17119–17125 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Anantha Sunil, N. Thota, K.G. Deepa, N. Jampana, Sulfurization of sputtered Ag–In precursors for AgInS2 solar cell absorber layers. Thin Solid Films 595, 5–11 (2015)CrossRefGoogle Scholar
  33. 33.
    K.P. Kadlag, P. Patil, M.J. Rao, S. Datta, A. Nag, Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals. CrystEngComm. 16, 3605–3612 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, T. Kakeno, K. Yoshino, Structural and electrical characterization of AgInS2 thin films grown by single-source thermal evaporation method. J. Mater. Sci.: Mater. Electron. 16, 393–396 (2005)Google Scholar
  35. 35.
    Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, K. Yoshino, Structural, electrical and optical properties of Agins2 thin films grown by thermal evaporation method. J. Phys. Chem. Solids 66, 1858–1861 (2005)CrossRefGoogle Scholar
  36. 36.
    E.-M. Kim, P. Ruankham, J.-H. Lee, K. Hachiya, T. Sagawa, Ag–In–Zn–S quantum dots for hybrid organic–inorganic solar cells. Jpn. J. Appl. Phys. 55, 02BF06 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Jasieniak, M. Califano, S.E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano. 5, 5888–5902 (2011)CrossRefGoogle Scholar
  38. 38.
    J.-H. Kim, K.-H. Lee, D.-Y. Jo, Y. Lee, J.Y. Hwang, H. Yang, Cu–In–Ga–S quantum dot composition-dependent device performance of electrically driven light-emitting diodes. Appl. Phys. Lett. 105, 133104 (2014)CrossRefGoogle Scholar
  39. 39.
    G.W. Gobeli, F.G. Allen, Direct and indirect excitation processes in photoelectric emission from silicon. Phys. Rev. 127, 141–149 (1962)CrossRefGoogle Scholar
  40. 40.
    T. Shen, L. Bian, B. Li, K. Zheng, T. Pullerits, J. Tian, A structure of CdS/CuxS quantum dots sensitized solar cells. Appl. Phys. Lett. 108, 213901 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Gherouel, I. Gaied, M. Amlouk, Effect of heat treatment in air on physical properties of AgInS2 sprayed thin films. J. Alloys Compd. 566, 147–155 (2013)CrossRefGoogle Scholar
  42. 42.
    B. Mao, C.-H. Chuang, C. McCleese, J. Zhu, C. Burda, Near-infrared emitting AgInS2/ZnS nanocrystals. J. Phys. Chem. C 118, 13883–13889 (2014)CrossRefGoogle Scholar
  43. 43.
    W. Zhang, J. Xiong, L. Jiang, J. Wang, T. Mei, X. Wang, H. Gu, W.A. Daoud, J. Li, Thermal stability-enhanced and high-efficiency planar perovskite solar cells with interface passivation. ACS Appl. Mater. Interfaces 9, 38467–38476 (2017)CrossRefGoogle Scholar
  44. 44.
    F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)CrossRefGoogle Scholar
  45. 45.
    C.P. Lin, H. Chen, A. Nakaruk, P. Koshy, C.C. Sorrell, Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Proc. 34, 627–636 (2013)CrossRefGoogle Scholar
  46. 46.
    X. Ren, D. Yang, Z. Yang, J. Feng, X. Zhu, J. Niu, Y. Liu, W. Zhao, S.F. Liu, Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9, 2421–2429 (2017)CrossRefGoogle Scholar
  47. 47.
    E. Li, Y. Guo, T. Liu, W. Hu, N. Wang, H. He, H. Lin, Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Adv. 6, 30978–30985 (2016)CrossRefGoogle Scholar
  48. 48.
    C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou, Y. Yang, Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater. Horiz. 2, 203–211 (2015)CrossRefGoogle Scholar
  49. 49.
    D. Yang, P. Fu, F. Zhang, N. Wang, J. Zhang, C. Li, High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers. J. Mater. Chem. A 2, 17281–17285 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Yang, W. Wang, Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3. J. Power Sources 293, 577–584 (2015)CrossRefGoogle Scholar
  51. 51.
    K.M. Kim, B.J. Choi, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok, J.H. Yoon, S. Han, C.S. Hwang, A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2 /Pt structure. Nanotechnology 22, 254010 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl. Phys. Lett. 90, 163517 (2007)CrossRefGoogle Scholar
  53. 53.
    K.M.A. Saron, M.R. Hashim, N.K. Allam, Heteroepitaxial growth of GaN/Si (111) junctions in ammonia-free atmosphere: charge transport, optoelectronic, and photovoltaic properties. J. Appl. Phys. 113, 124304 (2013)CrossRefGoogle Scholar
  54. 54.
    Y. Li, H. Yu, X. Huang, Z. Wu, M. Chen, A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells. RSC Adv. 7, 7890–7900 (2017)CrossRefGoogle Scholar
  55. 55.
    B. Capozzi, J. Xia, O. Adak, E.J. Dell, Z.-F. Liu, J.C. Taylor, J.B. Neaton, L.M. Campos, L. Venkataraman, Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015)CrossRefGoogle Scholar
  56. 56.
    H. Chen, P. Chao, D. Han, H. Wang, J. Miao, H. Zhong, H. Meng, F. He, Hydroxyl-terminated CuInS2-based quantum dots: potential cathode interfacial modifiers for efficient inverted polymer solar cells. ACS Appl. Mater. Interfaces 9, 7362–7367 (2017)CrossRefGoogle Scholar
  57. 57.
    H.-T. Kim, J.H. Seo, J.H. Ahn, M.-J. Baek, H.-D. Um, S. Lee, D.-H. Roh, J.-H. Yum, T.J. Shin, K. Seo, T.-H. Kwon, Customized energy down-shift using iridium complexes for enhanced performance of polymer solar cells. ACS Energy Lett. 1, 991–999 (2016)CrossRefGoogle Scholar
  58. 58.
    Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Energy ScienceKyoto UniversityKyotoJapan
  2. 2.National Nanotechnology CenterNational Science and Technology Development AgencyPathumthaniThailand

Personalised recommendations