Novel tin disulfide/graphene photoelectrochemical photodetector based on solid-state electrolytes and its performances

  • Hui Qiao
  • Xinhang Chen
  • Bo Wang
  • Zongyu HuangEmail author
  • Xiang Qi


Tin disulfide/graphene composites were successfully synthesized by one-step hydrothermal method. A novel SnS2/graphene solid-state photoelectrochemical photodetector with the advantages of small size, light weight, easy portability, and easy storage was successfully constructed based on solid-state electrolytes. The SnS2/graphene composites with pleated flower-like structure were characterized by scanning electron microscope characterization. At the same time, X-ray diffraction and Raman spectroscopy were carried out to confirm the composition and inherent physical properties of SnS2/graphene. Photoelectrochemical tests show that the SnS2/graphene solid-state photoelectrochemical photodetector has excellent photoresponse characteristics, and its photocurrent density is about 9 nA/cm2 under sunlight irradiation without additional power. In addition, the SnS2/graphene solid-state photoelectrochemical photodetector exhibits a good stability and the photocurrent density is only slightly attenuated (77% of the initial value) after 2000 s (50 cycles). Experimental results that SnS2/graphene solid-state photoelectrochemical photodetector is a potential new type self-powered photodetector. We believe that solid-state electrolytes with the advantages of small size, light weight, easy portability, and easy storage can be extended to other fields, such as solar cells, and supercapacitors.



This work was supported by the Grants from National Natural Science Foundation of China (No. 11504312), Science and Technology Program of Xiangtan (No. CXY-ZD20172002), as well as the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest between all authors.


  1. 1.
    G.J. Choi, Q. Van Le, K.S. Choi, K.C. Kwon, H.W. Jang, J.S. Gwag, S.Y. Kim, Adv. Mater. 29(36), 1702598 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater. 7(4), 1601843 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Chen, F. Lu, Y. Xia, H. Wang, X. Kuang, J. Mater. Chem. A 5(8), 4075–4083 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, ACS Appl. Mater. Interfaces 9(4), 3223–3245 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao, P. Chen, S. Wang, D. Shi, Q. Sun, G. Zhang, Adv. Mater. 29(34), 1702076 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Liu, T. Wang, G. Hu, C. Xu, Y. Xiong, Y. Wang, J. Mater. Sci. Mater. Electron. 29(1), 753–761 (2018)CrossRefGoogle Scholar
  7. 7.
    Q. Zhao, Y. Guo, Y. Zhou, X. Yan, X. Xu, J. Colloid Interface Sci. 490, 287–293 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Yu, Z. Ji, S. Zu, B. Du, Y. Kang, Z. Li, Z. Zhou, K. Shi, Z. Fang, Adv. Funct. Mater. 26(35), 6394–6401 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Adv. Funct. Mater. 26(24), 4405–4413 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Li, L. Huang, M. Zhong, Y. Li, Y. Wang, J. Li, Z. Wei, Adv. Electron. Mater. 2(11), 1600298 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, X.M. Meng, Adv. Funct. Mater. 25(27), 4255–4261 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Jia, C. Tang, R. Pan, Y.-Z. Long, C. Gu, J. Li, ACS Appl. Mater. Interfaces 10(21), 18073–18081 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Gao, Z. Mo, R. Guo, X. Niu, Z. Li, J. Mater. Sci. Mater. Electron. 29(7), 5944–5953 (2018)CrossRefGoogle Scholar
  14. 14.
    Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, 2D Mater. 2(3), 035011 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Qiao, Z. Huang, X. Ren, H. Yao, S. Luo, P. Tang, X. Qi, J. Zhong, J. Mater. Sci. 53(6), 4371–4377 (2018)CrossRefGoogle Scholar
  16. 16.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Wan, K. Chen, Z. Chen, F. Xie, X. Zeng, W. Xie, J. Chen, J. Xu, Adv. Funct. Mater. 27(19), 1603998 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Chen, Z. Huang, X. Ren, G. Xu, J. Zhou, Y. Tao, X. Qi, J. Zhong, ChemNanoMat 4(4), 373–378 (2018)CrossRefGoogle Scholar
  19. 19.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, D. Wang, Nano Lett. 7(4), 1003–1009 (2007)CrossRefGoogle Scholar
  20. 20.
    L. Peng, L. Hu, X. Fang, Adv. Funct. Mater. 24(18), 2591–2610 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun, H. Pan, B. Gu, H. Zhang, Z. Lv, W. Yang, ACS Nano 11(7), 7440–7446 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Adv. Funct. Mater. 27(18), 1606834 (2017)CrossRefGoogle Scholar
  23. 23.
    Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S.C. Dhanabalan, J.S. Ponraj, D. Zhang, J. Li, Adv. Funct. Mater. 28(16), 1705237 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Huang, X. Ren, Z. Li, H. Wang, Z. Huang, H. Qiao, P. Tang, J. Zhao, W. Liang, Y. Ge, Nanotechnology 29(23), 235201 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, Adv. Funct. Mater. 28(16), 1705833 (2018)CrossRefGoogle Scholar
  26. 26.
    W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, Nanoscale 10(5), 2404–2412 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Bauerle, J. Phys. Chem. Solids 30(12), 2657–2670 (1969)CrossRefGoogle Scholar
  28. 28.
    W. Krawiec, L. Scanlon Jr., J. Fellner, R. Vaia, S. Vasudevan, E. Giannelis, J. Power Sources 54(2), 310–315 (1995)CrossRefGoogle Scholar
  29. 29.
    S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7(11), 3394–3398 (2007)CrossRefGoogle Scholar
  30. 30.
    G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19(17), 2336–2340 (2007)CrossRefGoogle Scholar
  31. 31.
    C. Wang, K. Tang, Q. Yang, Y. Qian, Chem. Phys. Lett. 357(5–6), 371–375 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Julien, H. Mavi, K. Jain, M. Balkanski, C. Perez-Vicente, J. Morales, Mater. Sci. Eng. B 23(2), 98–104 (1994)CrossRefGoogle Scholar
  33. 33.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater. 21(13), 2950–2956 (2009)CrossRefGoogle Scholar
  35. 35.
    R.J. Candal, W.A. Zeltner, M.A. Anderson, Environ. Sci. Technol. 34(16), 3443–3451 (2000)CrossRefGoogle Scholar
  36. 36.
    H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H.Y. Hoh, ACS Nano 9(2), 1886–1894 (2015)CrossRefGoogle Scholar
  37. 37.
    Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.-L. Sun, ACS Appl. Mater. Interfaces 6(23), 20887–20894 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and OptoelectronicXiangtan UniversityHunanPeople’s Republic of China

Personalised recommendations