The role of Zn substitution in P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode for inhibiting the phase transition at high potential and dissolution of manganese at low potential

  • Jian-He HongEmail author
  • Man-Yu Wang
  • Yuan-Yuan Du
  • Lan Deng
  • Gang HeEmail author


P2-type Na2/3Ni1/3Mn2/3O2 has attracted particular attention as a cathode for sodium-ion batteries. However, its cycling stability in the potential range of 1.5–4.3 V is poor due to the phase transition at high potential and dissolution of manganese in the electrolyte solution at low potential. Herein, Zn substitution in Na0.67Ni0.23Zn0.1Mn0.67O2 is found to significantly improve the cycling stability, especially in the potential range of 1.5–4.3 V. XRD analysis and EDS elemental mapping indicate that Zn2+ ions take part in the crystallization of P2-type layered structure. The SEM measurement demonstrates that Zn substitution is beneficial for the growth of the P2-type layered structure. Charge/discharge profiles and ex-situ XRD provide evidences that Na0.67Ni0.23Zn0.1Mn0.67O2 exhibits a solid solution process at Ni4+/Ni3+ redox reaction and remains P2-type structure at potential up to 4.4 V. Zn substitution efficiently improves the cycling performances in the potential range of both 2.5–4.3 V and 1.5–4.3 V. When cycling in 1.5–4.3 V at a current density of 1 C (173 mA g−1), the specific capacity of Na0.67Ni0.23Zn0.1Mn0.67O2 changes from 142.2 mAh g−1 at 1st cycle to 129.0 mAh g−1 at 50th cycle, corresponding to 90.7% capacity retention. Zn substitution inhibits the phase transition at high potential and thus decreases the bulk manganese ions exposure to the electrolyte solution, so dissolution of surface manganese is efficiently suppressed at low potential. Na0.67Ni0.23Zn0.1Mn0.67O2 delivers an initial discharge capacity of 176.3 mAh g−1 at 0.1 C and a capacity of 86.3 mAh g−1 at 5 C, exhibiting enhanced rate capability.



This study was funded by the Natural Science Foundation of Hubei Province of China (Grant Number 2017CFB688).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_687_MOESM1_ESM.docx (125 kb)
Supplementary material 1 (DOCX 125 KB)


  1. 1.
    S. Choi, T.W. Kwon, A. Coskun, J.W. Choi, Science 357, 279 (2017)CrossRefGoogle Scholar
  2. 2.
    M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, Renew Sust. Energ. Rev. 78, 834 (2017)CrossRefGoogle Scholar
  3. 3.
    J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46, 3529 (2017)CrossRefGoogle Scholar
  4. 4.
    P.K. Nayak, L.T. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 57, 102 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. You, A. Manthiram, Adv. Energy Mater. 8, 1701785 (2018)CrossRefGoogle Scholar
  6. 6.
    A.R. Radwan, Y.L. Liu, V. Nguyen, W. Chen, J. Mater. Sci-Mater. Electron. 29, 7032 (2018)CrossRefGoogle Scholar
  7. 7.
    B. Guo, W.Y. Diao, T.T. Yuan, Y. Liu, Q. Yuan, G.N. Li, J.G. Yang, J. Mater. Sci-Mater. Electron. 29, 16325 (2018)CrossRefGoogle Scholar
  8. 8.
    C. Delmas, C. Fouassier, P. Hagenmuller, Physica B + C 99, 81 (1980)CrossRefGoogle Scholar
  9. 9.
    S.Y. Chu, S.Y. Wei, Y.B. Chen, R. Cai, K.M. Liao, W. Zhou, Z.P. Shao, Ceram. Int. 44, 5184 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Yu, S.M. Zhang, C. Fang, Y. Liu, S.Y. He, J. Xia, J.H. Yang, N. Zhang, Ceram. Int. 43, 9960 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11, 512 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 116, 300 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Lu, J.R. Dahn, J. Electrochem. Soc. 148, A1225 (2001)CrossRefGoogle Scholar
  14. 14.
    T. Risthaus, D. Zhou, X. Cao, X. He, B. Qiu, J. Wang, L. Zhang, Z.P. Liu, E. Paillard, G. Schumacher, M. Winter, J. Li, J. Power Sources 395, 16 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Yoda, K. Kubota, H. Isozumi, T. Horiba, S. Komaba, ACS Appl. Mater. Interfaces 10, 10986 (2018)CrossRefGoogle Scholar
  16. 16.
    G. Singh, N. Tapia-Ruiz, J.M. Lopez, U. del Amo, J.W. Maitra, A.R. Somerville, J. Armstrong, Martinez de Ilarduya, T., P.G. Rojo, Bruce, Chem. Mater. 28, 5087 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Wu, J. Guo, D. Wang, G. Zhong, M.J. McDonald, Y. Yang, J. Power Sources 281, 18 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Wu, G.L. Xu, G. Zhong, Z. Gong, M.J. McDonald, S. Zheng, R. Fu, Z. Chen, K. Amine, Y. Yang, ACS Appl. Mater. Interfaces 8, 22227 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun. 50, 3677 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Chen, W.F. Liu, H. Gao, Y. Zhuo, H. Hu, A. Chen, J.W. Zhang, J. Yan, K.Y. Liu, J. Mater. Chem. A 6, 12582 (2018)CrossRefGoogle Scholar
  21. 21.
    X.H. Zhang, W.L. Pang, F. Wan, J.Z. Guo, H.Y. Lu, J.Y. Li, Y.M. Xing, J.P. Zhang, X.L. Wu, ACS Appl. Mater. Interfaces 8, 20650 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Tiwari, I. Bhattacharya, Electrochimi. Acta 270, 363 (2018)CrossRefGoogle Scholar
  23. 23.
    P.F. Wang, H.R. Yao, X.Y. Liu, Y.X. Yin, J.N. Zhang, Y. Wen, X. Yu, L. Gu, Y.G. Guo, Sci. Adv. 4, eaar6018 (2018)CrossRefGoogle Scholar
  24. 24.
    I. Hasa, D. Buchholz, S. Passerini, J. Hassoun, ACS Appl. Mater. Interfaces 7, 5206 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Buchholz, L.G. Chagas, M. Winter, S. Passerini, Electrochim. Acta 110, 208 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Keller, Dr.D. Buchholz, S. Passerini, Adv. Energy Mater. 6, 1501555 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.S. Meng, Y. Hinuma, G. Ceder, J. Chem. Phys. 128, 104708 (2008)CrossRefGoogle Scholar
  28. 28.
    R. Berthelot, D. Carlier, C. Delmas, Nat. Mater. 10, 74 (2011)CrossRefGoogle Scholar
  29. 29.
    N. Tapia-Ruiz, W.M. Dose, N. Sharma, H. Chen, J. Heath, J.W. Somerville, U. Maitra, M.S. Islam, P.G. Bruce, Energy Environ. Sci. 11, 1470 (2018)CrossRefGoogle Scholar
  30. 30.
    C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Electrochimi. Acta 51, 3872 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina

Personalised recommendations