Advertisement

A facile preparation of SiO2/PEDOT core/shell nanoparticle composite film for electrochromic device

  • Sihang Zhang
  • Sheng Chen
  • Feng Yang
  • Fei Hu
  • Yinghui Zhao
  • Bin Yan
  • Hao Jiang
  • Ya Cao
Article
  • 29 Downloads

Abstract

In this paper, we report an electrochromic device (ECD) using novel silica/ poly(3,4-ethylenedioxythiophene) (SiO2/PEDOT) core/shell nanoparticle film as electrode. The SiO2/PEDOT core/shell nanocomposite film was prepared by a facile in situ chemical oxidative polymerization method. Compared with the pure PEDOT film, the SiO2/PEDOT nanocomposite film exhibits shorter response time (1.8 s for bleaching and 1.4 s for coloring), higher coloration efficiency (247.6 cm2/C) and better cycling stability (sustaining 81.8% of its initial optical contrast after switching 5000 s). The improved electrochromic performances are attributed to the core/shell nanostructures, which can make ion diffusion easier and provide larger surface area for charge-transfer reactions. Moreover, the ECD based on SiO2/PEDOT film also exhibits good electrochromic performances and has potential applications in smart windows, automobile anti-glare rearview mirrors and energy saving displays.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 21876119, 51503134 and 51721091), Sichuan Province Science and Technology Foundation (No. 2017GZ0429) and State Key Laboratory of Polymer Materials Engineering (No. SKLPME 2017-3-02). We would like to thank the analytical & Testing center of Sichuan university and we would be grateful to Hui wang for her help of SEM images.

References

  1. 1.
    W.Q. Wang, X.L. Wang, X.H. Xia, Z.J. Yao, Y. Zhong, J.P. Tu, Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 10(17), 8162–8169 (2018)Google Scholar
  2. 2.
    Z. Xu, L. Kong, Y. Wang, B. Wang, J. Zhao, Tuning band gap, color switching, optical contrast, and redox stability in solution-processable BDT-based electrochromic materials. Org. Electron. 54, 94–103 (2018)Google Scholar
  3. 3.
    V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4071–4096 (2012)Google Scholar
  4. 4.
    M. Gratzel, Materials science: ultrafast colour displays. Nature 409(6820), 575–576 (2012)Google Scholar
  5. 5.
    K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energ. Environ. Sci. 5(8), 8384–8389 (2012)Google Scholar
  6. 6.
    C. Park, S. Seo, H. Shin, B.D. Sarwade, J. Na, E. Kim, Switchable silver mirrors with long memory effects. Chem. Sci. 6(1), 596–602 (2014)Google Scholar
  7. 7.
    Y.T. Chun, M. Neeves, Q. Smithwick, F. Placido, D. Chu, High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes. Appl. Phys. Lett. 105(19), 1933011–1933015 (2014)Google Scholar
  8. 8.
    Q. Jiang, F. Liu, T. Li, T. Xu, Fast and low voltage-driven solid-state electrochromics using 3-D conductive FTO nanobead electrodes. J. Mater. Chem. C 2(4), 618–621 (2013)Google Scholar
  9. 9.
    Z. Wang, M. Zhu, S. Gou, Z. Pang, Y. Wang, Y. Su, Y. Huang, Q. Weng, O.G. Schmidt, J. Xu, Pairing of Luminescent Switch with Electrochromism for Quasi-Solid-State Dual-Function Smart Windows. ACS Appl. Mater. Interfaces 10(37), 31697–31703 (2018)Google Scholar
  10. 10.
    P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110(1), 268–320 (2010)Google Scholar
  11. 11.
    S.K. Deb, A novel electrophotographic system. Appl. Optics. 8(1), 192–195 (1969)Google Scholar
  12. 12.
    A. Lakshmi, R.J. Anandha, G. Gopu, P. Arumugam, C. Vedhi, Electrochemical, electrochromic behaviour and effects of supporting electrolyte on nano-thin film of poly(3,4-ethylenedioxy thiophene). Electrochim. Acta 92(3), 452–459 (2013)Google Scholar
  13. 13.
    S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, J. Chu, Synthesis and performance of highly stable star-shaped polyaniline electrochromic materials with triphenylamine core. J. Electron. Mater. 47(2), 1167–1175 (2018)Google Scholar
  14. 14.
    I. Winter, C. Reese, J. Hormes, G. Heywang, F. Jonas, The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem. Phys. 194(1), 207–213 (1995)Google Scholar
  15. 15.
    A.N. Aleshin, R. Kiebooms, A.J. Heeger, Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene). Synthetic Met. 101(1), 369–370 (1999)Google Scholar
  16. 16.
    C.W. Chang-Jian, E.C. Cho, S.C. Yen, B.C. Ho, Y.S. Hsiao, J.H. Huang, K.C. Lee, C.W. Chang-Jian, E.C. Cho, S.C. Yen, Facile preparation of WO3/PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes & Pigments 148, 465–473 (2018)Google Scholar
  17. 17.
    G.Y. Karaca, E. Eren, C. Alver, U. Koc, E. Uygun, L. Oksuz, A.U. Oksuz, Plasma Modified V2O5/PEDOT hybrid based flexible electrochromic devices. Electroanal. 29(5), 1324–1331 (2017)Google Scholar
  18. 18.
    Y. Shi, Y. Zhang, K. Tang, J. Cui, X. Shu, Y. Wang, J. Liu, Y. Jiang, H.H. Tan, Y. Wu, Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties. Chem. Eng. J. 355, 942–951 (2019)Google Scholar
  19. 19.
    X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang, J. Tu, H. Zhang, H.J. Fan, Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 13(9), 4562–4568 (2013)Google Scholar
  20. 20.
    A.P. Saxena, M. Deepa, A.G. Joshi, S. Bhandari, A.K. Srivastava, -ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl. mater. interfaces 3(4)(3), 4 (2011) Poly, , 1115–1126Google Scholar
  21. 21.
    Y. Shi, Y. Zhang, K. Tang, Y. Song, J. Cui, X. Shu, Y. Wang, J. Liu, Y. Wu, In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 8(25), 13679–13685 (2018)Google Scholar
  22. 22.
    M. Kateb, S. Safarian, M. Kolahdouz, M. Fathipour, V. Ahamdi, ZnO–PEDOT core–shell nanowires: An ultrafast, high contrast and transparent electrochromic display. Sol. Energy Mater. Sol. Cells 145, 200–205 (2016)Google Scholar
  23. 23.
    L.J. Ma, Y.X. Li, X.F. Yu, Q.B. Yang, C.H. Noh, Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability. Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008)Google Scholar
  24. 24.
    W.K. Chen, C.W. Hu, C.Y. Hsu, K.C. Ho, A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim. Acta 54(18), 4408–4415 (2009)Google Scholar
  25. 25.
    T. Hwang, H. Lee, H. Kim, G. Kim, G. Mun, Enhancement of electrochromic durability of a film made of silica-polyaniline core-shell nanoparticles. Surf. Rev. Lett. 17(1), 39–44 (2010)Google Scholar
  26. 26.
    S. Zhang, R. Fu, Z. Du, M. Jiang, M. Zhou, Y. Gu, S. Chen, High-performance electrochromic device based on nanocellulose/polyaniline and nanocellulose/poly(3,4-ethylenedioxythiophene) composite thin films. Opt. Eng. 56(7), 771011–771018 (2017)Google Scholar
  27. 27.
    G. Cirićmarjanović, L. Dragicević, M. Milojević, M. Mojović, S. Mentus, B. Dojcinović, B. Marjanović, J. Stejskal, Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. J. Phys. Chem. B. 113(20), 7116–7127 (2009)Google Scholar
  28. 28.
    D. Müller, R. Cercená, A.J.G. Aguayo, L.M. Porto, C.R. Rambo, G.M.O. Barra, Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J. Mater. Sci. Mater. Electron. 27(8), 8062–8067 (2016)Google Scholar
  29. 29.
    J.W. Choi, M.G. Han, S.Y. Kim, S.G. Oh, S.S. Im, Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions. Synthetic Met. 141(3), 293–299 (2004)Google Scholar
  30. 30.
    Z.S. Petrović, I. Javni, A. Waddon, G. Bánhegyi, Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci. 76(2), 133–151 (2015)Google Scholar
  31. 31.
    A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption behavior of core – shell structured poly(3,4-ethylenedioxythiophene) – barium ferrite nanocomposites. ACS Appl. Mater. Interfaces 2(3), 927–933 (2010)Google Scholar
  32. 32.
    R. Kiebooms, A. Aleshin, K. Hutchison, F. Wudl, A. Heeger, Doped poly(3,4-ethylenedioxythiophene) films: Thermal, electromagnetical and morphological analysis. Synthetic Met 101(1), 436–437 (1999)Google Scholar
  33. 33.
    G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, X.L. Wang, C.D. Gu, Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122(3), 51–58 (2014)Google Scholar
  34. 34.
    H. Zhang, H. Qu, H. Lv, S. Hou, K. Zhang, J. Zhao, X. Li, E. Frank, Y. Li, Improved electrochromic performance of poly(3,4-ethylenedioxythiophene) by incorporating a three-dimensionally ordered macroporous structure. Chem-Asian J. 11(20), 2882–2888 (2016)Google Scholar
  35. 35.
    E.C. Cho, C.W. Chang-Jian, B.C. Ho, C.C. Yu, Y.S. Hsiao, K.C. Lee, J.H. Huang, The effect of wetting property on electrochromic properties of functionalized poly(3,4-ethylenedioxythiophene) films. Dyes & Pigments 145, 95–102 (2017)Google Scholar
  36. 36.
    Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, X. Hu, High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures. Electrochim. Acta 224, 534–540 (2017)Google Scholar
  37. 37.
    G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 16025981–16025988 (2017)Google Scholar
  38. 38.
    G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A.E. Leesie, K. Qian, P.S. Lee, Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 7(2), 1373–1382 (2016)Google Scholar
  39. 39.
    X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology 19(46), 4657011–4657017 (2008)Google Scholar
  40. 40.
    G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015)Google Scholar
  41. 41.
    B.G. Choi, M.H. Yang, W.H. Hong, J.W. Choi, S.H. Yun, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012)Google Scholar
  42. 42.
    G. Cai, J. Tu, D. Zhou, J. Zhang, Q. Xiong, X. Zhao, X. Wang, C. Gu, Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J. Phys. Chem. C 117(31), 15967–15975 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina
  2. 2.Functional Polymer Materials Laboratory, College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina
  3. 3.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations