Skip to main content

Advertisement

Log in

A facile preparation of SiO2/PEDOT core/shell nanoparticle composite film for electrochromic device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 12 October 2020

This article has been updated

Abstract

In this paper, we report an electrochromic device (ECD) using novel silica/ poly(3,4-ethylenedioxythiophene) (SiO2/PEDOT) core/shell nanoparticle film as electrode. The SiO2/PEDOT core/shell nanocomposite film was prepared by a facile in situ chemical oxidative polymerization method. Compared with the pure PEDOT film, the SiO2/PEDOT nanocomposite film exhibits shorter response time (1.8 s for bleaching and 1.4 s for coloring), higher coloration efficiency (247.6 cm2/C) and better cycling stability (sustaining 81.8% of its initial optical contrast after switching 5000 s). The improved electrochromic performances are attributed to the core/shell nanostructures, which can make ion diffusion easier and provide larger surface area for charge-transfer reactions. Moreover, the ECD based on SiO2/PEDOT film also exhibits good electrochromic performances and has potential applications in smart windows, automobile anti-glare rearview mirrors and energy saving displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 12 October 2020

    In the original version of this article, Fig.��2 was inadvertently published with errors. The original version of Fig.��2 has been corrected by publishing this correction article. The correct results of Fig.��2 are shown as follows.

References

  1. W.Q. Wang, X.L. Wang, X.H. Xia, Z.J. Yao, Y. Zhong, J.P. Tu, Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 10(17), 8162–8169 (2018)

    Article  CAS  Google Scholar 

  2. Z. Xu, L. Kong, Y. Wang, B. Wang, J. Zhao, Tuning band gap, color switching, optical contrast, and redox stability in solution-processable BDT-based electrochromic materials. Org. Electron. 54, 94–103 (2018)

    Article  CAS  Google Scholar 

  3. V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4071–4096 (2012)

    Article  CAS  Google Scholar 

  4. M. Gratzel, Materials science: ultrafast colour displays. Nature 409(6820), 575–576 (2012)

    Article  Google Scholar 

  5. K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energ. Environ. Sci. 5(8), 8384–8389 (2012)

    Article  CAS  Google Scholar 

  6. C. Park, S. Seo, H. Shin, B.D. Sarwade, J. Na, E. Kim, Switchable silver mirrors with long memory effects. Chem. Sci. 6(1), 596–602 (2014)

    Article  CAS  Google Scholar 

  7. Y.T. Chun, M. Neeves, Q. Smithwick, F. Placido, D. Chu, High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes. Appl. Phys. Lett. 105(19), 1933011–1933015 (2014)

    Article  CAS  Google Scholar 

  8. Q. Jiang, F. Liu, T. Li, T. Xu, Fast and low voltage-driven solid-state electrochromics using 3-D conductive FTO nanobead electrodes. J. Mater. Chem. C 2(4), 618–621 (2013)

    Article  Google Scholar 

  9. Z. Wang, M. Zhu, S. Gou, Z. Pang, Y. Wang, Y. Su, Y. Huang, Q. Weng, O.G. Schmidt, J. Xu, Pairing of Luminescent Switch with Electrochromism for Quasi-Solid-State Dual-Function Smart Windows. ACS Appl. Mater. Interfaces 10(37), 31697–31703 (2018)

    Article  CAS  Google Scholar 

  10. P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110(1), 268–320 (2010)

    Article  CAS  Google Scholar 

  11. S.K. Deb, A novel electrophotographic system. Appl. Optics. 8(1), 192–195 (1969)

    Article  Google Scholar 

  12. A. Lakshmi, R.J. Anandha, G. Gopu, P. Arumugam, C. Vedhi, Electrochemical, electrochromic behaviour and effects of supporting electrolyte on nano-thin film of poly(3,4-ethylenedioxy thiophene). Electrochim. Acta 92(3), 452–459 (2013)

    Article  CAS  Google Scholar 

  13. S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, J. Chu, Synthesis and performance of highly stable star-shaped polyaniline electrochromic materials with triphenylamine core. J. Electron. Mater. 47(2), 1167–1175 (2018)

    Article  CAS  Google Scholar 

  14. I. Winter, C. Reese, J. Hormes, G. Heywang, F. Jonas, The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem. Phys. 194(1), 207–213 (1995)

    Article  CAS  Google Scholar 

  15. A.N. Aleshin, R. Kiebooms, A.J. Heeger, Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene). Synthetic Met. 101(1), 369–370 (1999)

    Article  CAS  Google Scholar 

  16. C.W. Chang-Jian, E.C. Cho, S.C. Yen, B.C. Ho, Y.S. Hsiao, J.H. Huang, K.C. Lee, C.W. Chang-Jian, E.C. Cho, S.C. Yen, Facile preparation of WO3/PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes & Pigments 148, 465–473 (2018)

    Article  CAS  Google Scholar 

  17. G.Y. Karaca, E. Eren, C. Alver, U. Koc, E. Uygun, L. Oksuz, A.U. Oksuz, Plasma Modified V2O5/PEDOT hybrid based flexible electrochromic devices. Electroanal. 29(5), 1324–1331 (2017)

    Article  CAS  Google Scholar 

  18. Y. Shi, Y. Zhang, K. Tang, J. Cui, X. Shu, Y. Wang, J. Liu, Y. Jiang, H.H. Tan, Y. Wu, Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties. Chem. Eng. J. 355, 942–951 (2019)

    Article  CAS  Google Scholar 

  19. X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang, J. Tu, H. Zhang, H.J. Fan, Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 13(9), 4562–4568 (2013)

    Article  CAS  Google Scholar 

  20. A.P. Saxena, M. Deepa, A.G. Joshi, S. Bhandari, A.K. Srivastava, -ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl. mater. interfaces 3(4)(3), 4 (2011) Poly, , 1115–1126

    Google Scholar 

  21. Y. Shi, Y. Zhang, K. Tang, Y. Song, J. Cui, X. Shu, Y. Wang, J. Liu, Y. Wu, In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 8(25), 13679–13685 (2018)

    Article  CAS  Google Scholar 

  22. M. Kateb, S. Safarian, M. Kolahdouz, M. Fathipour, V. Ahamdi, ZnO–PEDOT core–shell nanowires: An ultrafast, high contrast and transparent electrochromic display. Sol. Energy Mater. Sol. Cells 145, 200–205 (2016)

    Article  CAS  Google Scholar 

  23. L.J. Ma, Y.X. Li, X.F. Yu, Q.B. Yang, C.H. Noh, Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability. Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008)

    Article  CAS  Google Scholar 

  24. W.K. Chen, C.W. Hu, C.Y. Hsu, K.C. Ho, A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim. Acta 54(18), 4408–4415 (2009)

    Article  CAS  Google Scholar 

  25. T. Hwang, H. Lee, H. Kim, G. Kim, G. Mun, Enhancement of electrochromic durability of a film made of silica-polyaniline core-shell nanoparticles. Surf. Rev. Lett. 17(1), 39–44 (2010)

    Article  CAS  Google Scholar 

  26. S. Zhang, R. Fu, Z. Du, M. Jiang, M. Zhou, Y. Gu, S. Chen, High-performance electrochromic device based on nanocellulose/polyaniline and nanocellulose/poly(3,4-ethylenedioxythiophene) composite thin films. Opt. Eng. 56(7), 771011–771018 (2017)

    Google Scholar 

  27. G. Cirićmarjanović, L. Dragicević, M. Milojević, M. Mojović, S. Mentus, B. Dojcinović, B. Marjanović, J. Stejskal, Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. J. Phys. Chem. B. 113(20), 7116–7127 (2009)

    Article  CAS  Google Scholar 

  28. D. Müller, R. Cercená, A.J.G. Aguayo, L.M. Porto, C.R. Rambo, G.M.O. Barra, Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J. Mater. Sci. Mater. Electron. 27(8), 8062–8067 (2016)

    Article  CAS  Google Scholar 

  29. J.W. Choi, M.G. Han, S.Y. Kim, S.G. Oh, S.S. Im, Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions. Synthetic Met. 141(3), 293–299 (2004)

    Article  CAS  Google Scholar 

  30. Z.S. Petrović, I. Javni, A. Waddon, G. Bánhegyi, Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci. 76(2), 133–151 (2015)

    Article  Google Scholar 

  31. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption behavior of core – shell structured poly(3,4-ethylenedioxythiophene) – barium ferrite nanocomposites. ACS Appl. Mater. Interfaces 2(3), 927–933 (2010)

    Article  CAS  Google Scholar 

  32. R. Kiebooms, A. Aleshin, K. Hutchison, F. Wudl, A. Heeger, Doped poly(3,4-ethylenedioxythiophene) films: Thermal, electromagnetical and morphological analysis. Synthetic Met 101(1), 436–437 (1999)

    Article  CAS  Google Scholar 

  33. G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, X.L. Wang, C.D. Gu, Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122(3), 51–58 (2014)

    Article  CAS  Google Scholar 

  34. H. Zhang, H. Qu, H. Lv, S. Hou, K. Zhang, J. Zhao, X. Li, E. Frank, Y. Li, Improved electrochromic performance of poly(3,4-ethylenedioxythiophene) by incorporating a three-dimensionally ordered macroporous structure. Chem-Asian J. 11(20), 2882–2888 (2016)

    Article  CAS  Google Scholar 

  35. E.C. Cho, C.W. Chang-Jian, B.C. Ho, C.C. Yu, Y.S. Hsiao, K.C. Lee, J.H. Huang, The effect of wetting property on electrochromic properties of functionalized poly(3,4-ethylenedioxythiophene) films. Dyes & Pigments 145, 95–102 (2017)

    Article  CAS  Google Scholar 

  36. Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, X. Hu, High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures. Electrochim. Acta 224, 534–540 (2017)

    Article  CAS  Google Scholar 

  37. G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 16025981–16025988 (2017)

    Article  CAS  Google Scholar 

  38. G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A.E. Leesie, K. Qian, P.S. Lee, Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 7(2), 1373–1382 (2016)

    Article  CAS  Google Scholar 

  39. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology 19(46), 4657011–4657017 (2008)

    Article  CAS  Google Scholar 

  40. G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015)

    Article  CAS  Google Scholar 

  41. B.G. Choi, M.H. Yang, W.H. Hong, J.W. Choi, S.H. Yun, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012)

    Article  CAS  Google Scholar 

  42. G. Cai, J. Tu, D. Zhou, J. Zhang, Q. Xiong, X. Zhao, X. Wang, C. Gu, Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J. Phys. Chem. C 117(31), 15967–15975 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 21876119, 51503134 and 51721091), Sichuan Province Science and Technology Foundation (No. 2017GZ0429) and State Key Laboratory of Polymer Materials Engineering (No. SKLPME 2017-3-02). We would like to thank the analytical & Testing center of Sichuan university and we would be grateful to Hui wang for her help of SEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Chen or Ya Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, S., Yang, F. et al. A facile preparation of SiO2/PEDOT core/shell nanoparticle composite film for electrochromic device. J Mater Sci: Mater Electron 30, 3994–4005 (2019). https://doi.org/10.1007/s10854-019-00686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00686-6

Navigation