Advertisement

Cobalt nanoparticles embedded into polydimethylsiloxane-grafted cocoa shell: functional agrowaste for CO2 capture

  • Julien VieillardEmail author
  • Nabil BouaziziEmail author
  • Flavia Fioresi
  • Radhouane Bargougui
  • Nicolas Brun
  • Patrick Nkuigue Fotsing
  • Emmanuel Djoufac Woumfo
  • Olivier Thoumire
  • Hassan Atmani
  • Nadine Mofaddel
  • Franck Le Derf
Article
  • 17 Downloads

Abstract

This paper presents for the first time surface functionalization of cocoa shells (CS) through the covalent grafting of 3-aminopropyltriethoxysilane (APTES) followed by the substitution of poly(dimethylsiloxane) (PDMS) and in situ generation/insertion of cobalt nanoparticles (Co-NP). The immobilization and stability of APTES–PDMS on cocoa shell were confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetry. Morphological analyses by scanning electron microscopy demonstrated that Co-NPs successfully grew on the surface of CS–APTES–PDMS. The CO2-adsorption capacity of these new materials was examined at ambient conditions. Both CS–APTES–PDMS and CS–APTES–PDMS–Co showed increased CO2 adsorption capacities as compared to unmodified cocoa shell. This enhancement was explained by the synergetic behavior of the silane derivate, PDMS grafting, and Co-NP incorporation for CO2 adsorption. This work represents a new step toward using cocoa shell as an excellent low-cost candidate for a variety of environmental applications such as CO2 storage at ambient temperature.

Notes

Acknowledgements

We thank Mr Antoine Fontaine for his help to improve the quality of some figures. This work was partially supported by the INSA Rouen, Rouen University, the CNRS, Labex SynOrg (ANR-11-LABX-0029), the European Battuta Program, the Normandy region (CBS network), the European Union (FEDER) and the Evreux Portes de Normandie Agglomeration.

Author contributions

All authors contributed to the manuscript, and approved of its final version.

Supplementary material

10854_2019_679_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1971 KB)

References

  1. 1.
    J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—the U.S. department of energy’s carbon sequestration program. Int. J. Greenhouse Gas Control 2(1), 9–20 (2008)Google Scholar
  2. 2.
    C. Azar, K. Lindgren, E. Larson, K. Möllersten, Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim. Change 74(1), 47–79 (2006)Google Scholar
  3. 3.
    D. Aaron, C. Tsouris, Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40(1–3), 321–348 (2005)Google Scholar
  4. 4.
    Y.L. Tan, M.A. Islam, M. Asif, B.H. Hameed, Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed. Energy 77, 926–931 (2014)Google Scholar
  5. 5.
    S. Builes, P. López-Aranguren, J. Fraile, L.F. Vega, C. Domingo, Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations. Energy Fuels 29(6), 3855–3862 (2015)Google Scholar
  6. 6.
    P. López-Aranguren, S. Builes, J. Fraile, L.F. Vega, C. Domingo, Understanding the performance of new amine-functionalized mesoporous silica materials for CO2 adsorption. Ind. Eng. Chem. Res. 53(40), 15611–15619 (2014)Google Scholar
  7. 7.
    E. David, J. Kopac, Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrolysis 110, 322–332 (2014)Google Scholar
  8. 8.
    A. Kongnoo, P. Intharapat, P. Worathanakul, C. Phalakornkule, Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures. J. Environ. Chem. Eng. 4(1), 73–81 (2016)Google Scholar
  9. 9.
    K. Li, S. Tian, J. Jiang, J. Wang, X. Chen, F. Yan, Pine cone shell-based activated carbon used for CO2 adsorption. J. Mater. Chem. A 4(14), 5223–5234 (2016)Google Scholar
  10. 10.
    T. Chen, S. Deng, B. Wang, J. Huang, Y. Wang, G. Yu, CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups. RSC Adv. 5(60), 48323–48330 (2015)Google Scholar
  11. 11.
    S. Sengupta, V. Amte, R. Dongara, A.K. Das, H. Bhunia, P.K. Bajpai, Effects of the adsorbent preparation method for CO2 capture from flue gas using K2CO3/Al2O3 adsorbents. Energy Fuels 29(1), 287–297 (2015)Google Scholar
  12. 12.
    Y. Liu, N. Zhang, Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 33(21), 5363–5375 (2012)Google Scholar
  13. 13.
    X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. J. 250, 164–174 (2014)Google Scholar
  14. 14.
    M. Ledwaba, N. Masilela, T. Nyokong, E. Antunes, Surface modification of silica-coated gadolinium oxide nanoparticles with zinc tetracarboxyphenoxy phthalocyanine for the photodegradation of orange G. J. Mol. Catal. A 403, 64–76 (2015)Google Scholar
  15. 15.
    A. Pattanayak, S.C. Jana, Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 46(14), 5183–5193 (2005)Google Scholar
  16. 16.
    E.V. Lebedev, S.S. Ishchenko, V.D. Denisenko, V.O. Dupanov, E.G. Privalko, A.A. Usenko, V.P. Privalko, Physical characterization of polyurethanes reinforced with the in situ-generated silica-polyphosphate nano-phase. Compos. Sci. Technol. 66(16), 3132–3137 (2006)Google Scholar
  17. 17.
    H.D. Rozman, Y.S. Yeo, G.S. Tay, A. Abubakar, The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polym. Test. 22(6), 617–623 (2003)Google Scholar
  18. 18.
    J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41(6), 2308–2322 (2012)Google Scholar
  19. 19.
    J.-Y. Jung, J.W. Lee, Y.T. Kang, CO2 absorption characteristics of nanoparticle suspensions in methanol. J. Mech. Sci. Technol. 26(8), 2285–2290 (2012)Google Scholar
  20. 20.
    J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170(2–3), 471–481 (2011)Google Scholar
  21. 21.
    M. Barberio, P. Barone, A. Imbrogno, F. Xu, CO2 adsorption on silver nanoparticle/carbon nanotube nanocomposites: a study of adsorption characteristics. Phys. Status Solidi B 252(9), 1955–1959 (2015)Google Scholar
  22. 22.
    X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 “molecular basket” adsorbents. Int. J. Environ. Technol. Manag. 4, 32–52 (2004)Google Scholar
  23. 23.
    A. Ergudenler, A.E. Ghaly, Quality of gas produced from wheat straw in a dual-distributor type fluidized bed gasifier. Biomass Bioenergy 3(6), 419–430 (1992)Google Scholar
  24. 24.
    Y. Shen, K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013)Google Scholar
  25. 25.
    O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production—a review. Renew. Sustain. Energy Rev. 11(9), 1966–2005 (2007)Google Scholar
  26. 26.
    A.R. Mohamed, M. Mohammadi, G.N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 14(6), 1591–1599 (2010)Google Scholar
  27. 27.
    A. Azzouz, S. Nousir, N. Bouazizi, R. Roy, Metal–inorganic–organic matrices as efficient sorbents for hydrogen storage. ChemSusChem 8(5), 800–803 (2015)Google Scholar
  28. 28.
    A.F. Pinheiro de Melo, Development and characterization of polymer-grafted ceramic membranes for solvent nanofiltration. GVO drukkers & vormgevers BV| Ponsen & Looijen: 2013Google Scholar
  29. 29.
    N. Bouazizi, M. Khelil, F. Ajala, T. Boudharaa, A. Benghnia, H. Lachheb, R. Ben Slama, B. Chaouachi, A. M’Nif, A. Azzouz, Molybdenum-loaded 1,5-diaminonaphthalene/ZnO materials with improved electrical properties and affinity towards hydrogen at ambient conditions. Int. J. Hydrog. Energy 41(26), 11232–11241 (2016)Google Scholar
  30. 30.
    G. Fritz, V. Schädler, N. Willenbacher, N.J. Wagner, Electrosteric stabilization of colloidal dispersions. Langmuir 18(16), 6381–6390 (2002)Google Scholar
  31. 31.
    M. Yamaura, R. Camilo, L. Sampaio, M. Macedo, M. Nakamura, H. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279(2), 210–217 (2004)Google Scholar
  32. 32.
    M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane, V. Sivasankar, M. Zarrabi, Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45(4), 1821–1834 (2014)Google Scholar
  33. 33.
    B. Saif, C. Wang, D. Chuan, S. Shuang, Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J. Biomater. Nanobiotechnol. 6(04), 267 (2015)Google Scholar
  34. 34.
    L. Maurizi, A. Claveau, H. Hofmann, Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation. J. Nanomater. 16(1), 239 (2015)Google Scholar
  35. 35.
    J. Choi, N.S. Wang, V. Reipa, Electrochemical reduction synthesis of photoluminescent silicon nanocrystals. Langmuir 25(12), 7097–7102 (2009)Google Scholar
  36. 36.
    D. Enescu, V. Hamciuc, L. Pricop, T. Hamaide, V. Harabagiu, B.C. Simionescu, Polydimethylsiloxane-modified chitosan I. Synthesis and structural characterisation of graft and crosslinked copolymers. J. Polym. Res. 16(1), 73–80 (2009)Google Scholar
  37. 37.
    A.H. Basta, W.M. Hosny, H. El-Saied, A.K. Hadi, A., metal chelates with some cellulose derivates; part IV structural chemistry of HEC complexes. Cellulose 3, 1–10 (1996)Google Scholar
  38. 38.
    D. Enescu, V. Hamciuc, R. Ardeleanu, M. Cristea, A. Ioanid, V. Harabagiu, B.C. Simionescu, Polydimethylsiloxane modified chitosan. Part III: preparation and characterization of hybrid membranes. Carbohydr. Polym. 76(2), 268–278 (2009)Google Scholar
  39. 39.
    H.-Y. Lin, Y.-W. Chen, The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys. 85(1), 171–175 (2004)Google Scholar
  40. 40.
    J. Vieillard, N. Bouazizi, R. Bargougui, P.N. Fotsing, O. Thoumire, G. Ladam, N. Brun, J.F. Hochepied, E.D. Woumfo, N. Mofaddel, F.L. Derf, A. Azzouz, Metal-inorganic-organic core–shell material as efficient matrices for CO2 adsorption: synthesis, properties and kinetic studies. J. Taiwan Inst. Chem. Eng. (2018) (in press).  https://doi.org/10.1016/j.jtice.2018.08.020 Google Scholar
  41. 41.
    R. Bargougui, N. Bouazizi, N. Brun, P.N. Fotsing, O. Thoumire, G. Ladam, E.D. Woumfo, N. Mofaddel, F.L. Derf, J. Vieillard, Improvement in CO2 adsorption capacity of cocoa shell through functionalization with amino groups and immobilization of cobalt nanoparticles. J. Environ. Chem. Eng. 6(1), 325–331 (2018)Google Scholar
  42. 42.
    J. Vieillard, N. Bouazizi, R. Bargougui, N. Brun, P. Fotsing Nkuigue, E. Oliviero, O. Thoumire, N. Couvrat, E. Djoufac Woumfo, G. Ladam, N. Mofaddel, A. Azzouz, F. Le Derf, Cocoa shell-deriving hydrochar modified through aminosilane grafting and cobalt particle dispersion as potential carbon dioxide adsorbent. Chem. Eng. J. 342, 420–428 (2018)Google Scholar
  43. 43.
    A. Azzouz, N. Platon, S. Nousir, K. Ghomari, D. Nistor, T.C. Shiao, R. Roy, OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep. Purif. Technol. 108, 181–188 (2013)Google Scholar
  44. 44.
    C. Chen, D.-W. Park, W.-S. Ahn, Surface modification of a low cost bentonite for post-combustion CO2 capture. Appl. Surf. Sci. 283, 699–704 (2013)Google Scholar
  45. 45.
    A.V. Arus, M.N. Tahir, R. Sennour, T.C. Shiao, L.M. Sallam, I.D. Nistor, R. Roy, A. Azzouz, Cu0 and Pd0 loaded organo-bentonites as sponge–like matrices for hydrogen reversible capture at ambient conditions. ChemSelect 1(7), 1452–1461 (2016)Google Scholar
  46. 46.
    S. Luo, S. Chen, S. Chen, L. Zhuang, N. Ma, T. Xu, Q. Li, X. Hou, Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture. J. Environ. Manag. 168, 142–148 (2016)Google Scholar
  47. 47.
    N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, T. Shiao, R. Roy, A. Azzouz, Metal-loaded polyol-montmorillonite with improved affinity towards hydrogen. J. Energy Inst. 91, 110–119 (2016)Google Scholar
  48. 48.
    S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Cobalt imidazolate metal–organic frameworks photosplit CO2 under Mild reaction conditions. Angew. Chem. Int. Ed. 53(4), 1034–1038 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julien Vieillard
    • 1
    Email author
  • Nabil Bouazizi
    • 1
    Email author
  • Flavia Fioresi
    • 1
  • Radhouane Bargougui
    • 1
  • Nicolas Brun
    • 2
  • Patrick Nkuigue Fotsing
    • 3
  • Emmanuel Djoufac Woumfo
    • 3
  • Olivier Thoumire
    • 4
  • Hassan Atmani
    • 4
  • Nadine Mofaddel
    • 1
  • Franck Le Derf
    • 1
  1. 1.Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014)EvreuxFrance
  2. 2.Institut Charles Gerhardt Montpellier, Université de Montpellier, ENSCM, CNRSMontpellierFrance
  3. 3.Laboratoire de Physico-Chimie des Matériaux Minéraux, Département de Chimie Inorganique, Faculté des SciencesUniversité de Yaoundé IYaoundeCameroon
  4. 4.Normandie Université, UNIROUEN, CNRS, PBS, UMR 6270EvreuxFrance

Personalised recommendations