Advertisement

Polypyrrole-CuO based composites, promotional effects of CuO contents on polypyrrole characteristics

  • Khan MalookEmail author
  • Ihsan-ul-Haque
  • Majid Khan
  • Muhammad Ali
Article
  • 32 Downloads

Abstract

This study deals with the synthesis of polypyrrole (Ppy) and polypyrrole–CuO based composites and investigation of promotional effects of CuO contents on polypyrrole properties. CuO was prepared by co-precipitation method while polypyrrole and the composites were obtained via chemical oxidation polymerization using FeCl3.6H2O as an oxidant. Various characteristics of the samples were studied through high technology equipment. There was no chemical interaction between the components of the composites. The polymer was amorphous while the composites were of crystalline nature and improved thermal stability as confirmed by X-ray diffractometery and Thermogravimetric analysis. The UV/Vis spectrophotometric study confirmed the decrease in band gap energy of Ppy with the content of CuO. The composites were of better electrical properties than individual polypyrrole and CuO. The electrical resistance of the composites was lower than the individual components of the composites. Similarly, the study of I–V characteristics curves confirmed the ohmic behavior of the samples.

References

  1. 1.
    M.H. Naveen, N.G. Gurudatt, Y. Shim, Applied Mater. Today 9, 419 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Kanwal, S.A. Siddiqi, A. Batool, M. Imran, W. Mushtaq, T. Jamil, Synth. Met. 16, 335 (2011)CrossRefGoogle Scholar
  3. 3.
    C.I. Awuzie, Mater. Today: Proc. 4, 5721 (2017)CrossRefGoogle Scholar
  4. 4.
    A.N. Aleshin, Adv. Mater. 18, 17 (2006)CrossRefGoogle Scholar
  5. 5.
    M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345 (2002)CrossRefGoogle Scholar
  6. 6.
    P.M. Dziewoński, M. Grzeszczuk, Electrochim. Acta 55, 3336 (2010)CrossRefGoogle Scholar
  7. 7.
    E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemán, Corros. Sci. 50, 721 (2008)CrossRefGoogle Scholar
  8. 8.
    R. Ansari, E-J Chem. 3, 186 (2006)CrossRefGoogle Scholar
  9. 9.
    E.Z.M. Tarmizi, H. Baqiah, Z.A. Talib, H.M. Kamari, Results Phys. 11, 800 (2018)Google Scholar
  10. 10.
    P. Moarref, M. Pishvaei, A.S. Gorgani, F. Najafi, Des. Monomers Polym. 19, 138 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Yuvaraj, E.J. Park, Y.S. Gal, K.T. Lim, Colloids Surf. A 313, 300 (2008)CrossRefGoogle Scholar
  12. 12.
    T.H. Le, Y. Kim, H. Yoon, Polymers 9, 150 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, Talanta 86, 157 (2011)CrossRefGoogle Scholar
  15. 15.
    S.W. Choi, A. Katoch, J. Zhang, S.S. Kim, Sens. Actuator B 176, 585 (2013)CrossRefGoogle Scholar
  16. 16.
    L.C. Jiang, W.D. Zhang, Biosens. Bioelectron. 25, 1402 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Chang, M.J. Kao, K.C. Cho, S.L. Chen, K.H. Chu, C.C. Chen, Curr. Appl. Phys. 11, 19 (2011)CrossRefGoogle Scholar
  18. 18.
    D.P. Singh, A.Q. Ojha, O.N. Srivastava, J. Phys. Chem. C 113, 3409 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Basavaraja, N.R. Kim, E.A.J.R. Pierson, D.S. Huh, A. Venkataraman, Mater. Chem. Phys. 92, 21 (2005)CrossRefGoogle Scholar
  20. 20.
    D. Mecerreyesa, R. Stevensb, C. Nguyenb, J.A. Pomposoa, M. Bengoetxeaa, H. Grandea, Synth. Met. 126, 173 (2002)CrossRefGoogle Scholar
  21. 21.
    Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou. X. Liu, Solid State Sci. 11, 1319 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Han, Polym. Compos. 30, 66 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Lamprakopoulos, D. Yfantis, A. Yfantis, D. Schmeisser, J. Anastassopoulou, T. Theophanides, Synth. Met. 144, 229 (2004)CrossRefGoogle Scholar
  24. 24.
    K. Akhtar, I.U. Haq, K. Malook, Powder Technol. 283, 505 (2015)CrossRefGoogle Scholar
  25. 25.
    J.Y. Ouyang, Y.F. Li, Polymer 15, 3997 (1997)CrossRefGoogle Scholar
  26. 26.
    K. Malook, H. Khan, M. Shah, I.U. Haque, Korean J. Chem. Eng. 35, 12 (2018)CrossRefGoogle Scholar
  27. 27.
    K. Majid, R. Tabassum, A.F. Shah, S. Ahmad, M.L. Singla, J. Mater. Sci.: Mater. Electron. 20, 958 (2009)Google Scholar
  28. 28.
    A. Batool, F. Kanwal, M. Imran, T.J. Saadat. A. Siddiqi, Synth.Met. 161, 2753 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Khan. K. MalookM. Shah, J. Mater. Sci.: Mater. Electron. 29, 9090 (2018)Google Scholar
  30. 30.
    A. Broido, J. Polym. Sci. Part A 7, 1761 (1969)CrossRefGoogle Scholar
  31. 31.
    C. Piewnuan, J. Wootthikanokkhan, P. Ngaotrakanwiwat, V. Meeyoo, S. Chiarakorn, Superlattices Microstruct. 75, 105 (2014)CrossRefGoogle Scholar
  32. 32.
    E.M. Sullivan, Y.J. Oh, R.A. Gerhardt, B. Wang, K. Kalaitzidou, J. Polym. Res. 21, 563 (2014)CrossRefGoogle Scholar
  33. 33.
    M.R. Bengochea, F.M. Aliev, N.J. Pinto, J. Phys. Condens. Mater. 14, 11769 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centralized Resource LaboratoryUniversity of PeshawarPeshawarPakistan
  2. 2.Department of Physics, Materials Research LaboratoryUniversity of PeshawarPeshawarPakistan

Personalised recommendations