Advertisement

Low cost synthesis of silicon nanowires for photonic applications

  • Maria Josè Lo Faro
  • Antonio Alessio Leonardi
  • Cristiano D’Andrea
  • Dario Morganti
  • Paolo Musumeci
  • Cirino Vasi
  • Francesco Priolo
  • Barbara Fazio
  • Alessia IrreraEmail author
Article
  • 32 Downloads

Abstract

Achieving light management in nanostructured materials is a recent challenge of great resonance among the scientific community, which is generally attained by expensive surface patterning requiring advanced technologies. In this paper, we report the realization of 2D random fractal arrays of silicon nanowires (NWs) synthesized with a low cost approach compatible with Si technology, without the use of any lithography or mask. Their innovative photonic properties are exploited in comparison to non-fractal nanowires. In particular, a remarkable room temperature luminescence is attained in Si NWs due to quantum confinement effect. The NWs fabrication was engineered in order to produce two-dimensional random fractal arrays of Si NWs whose structural properties were investigated and compared to other non-fractal Si NW systems. The impressive light trapping and strongly enhanced Raman signal of our fractal Si NW array is of significant interest for potential applications spanning from photonics, to photovoltaics and sensing.

Notes

Acknowledgements

D. Arigò, R. Caruso, G. Gismondo, G. Lupò, C. Percolla and G. Spinella are acknowledged for expert technical assistance. We acknowledge the Project PON ARS01_00459 ADAS +.

References

  1. 1.
    S.E. Thompson, S. Parthasarathy, Mater. Today 9, 20 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Sandhu, Nat. Nanotechnol. (2008).  https://doi.org/10.1038/nnano.2008.12.Google Scholar
  3. 3.
    A.A. Leonardi, M.J. Lo Faro, S. Petralia, B. Fazio, P. Musumeci, S. Conoci, A. Irrera, F. Priolo, ACS Sens. 3, 1690 (2018)CrossRefGoogle Scholar
  4. 4.
    S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J.G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R.C. Webb, C.H. Lee, S. Chung, D.S. Wie, A.D. Gujar, B. Vemulapalli, A.H. Kim, K.-M. Lee, J. Cheng, Y. Huang, S.H. Lee, P.V. Braun, W. Z. Ray, J. A. Rogers, Nature 530, 71 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Ducournau, Nat. Photon. 12, 574 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Nat. Nanotechnol. 9, 19 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Irrera, G. Franzò, F. Iacona, A. Canino, G. Di Stefano, D. Sanfilippo, A. Piana, P.G. Fallica, F. Priolo, Physica E 38, 181 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Chan, P.M. Fauchet, Y. Li, L.J. Rothberg, B.L. Miller, Phys. Status Solidi A 182, 541 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Irrera, M.J. Lo Faro, C. D’Andrea, A. Alessio Leonardi, P. Artoni, B. Fazio, R. Anna Picca, N. Cioffi, S. Trusso, G. Franzo, P. Musumeci, F. Priolo, F. Iacona, Semicond. Sci. Technol. 32, 043004 (2017)CrossRefGoogle Scholar
  10. 10.
    R.J. Walters, G.I. Bourianoff, H.A. Atwater, Nat. Mater. 4, 143 (2005)CrossRefGoogle Scholar
  11. 11.
    O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38, 1 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Abdelhameed, D.R. Martir, S. Chen, W.Z. Xu, O.O. Oyeneye, S. Chakrabarti, E. Zysman-Colman, P.A. Charpentier, Sci. Rep. 8, 3050 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Wu, J. Dai, Y. Shao, Y. Sun, RSC Adv. 5, 83581 (2015)CrossRefGoogle Scholar
  14. 14.
    A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys. 82, 909 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Irrera, A.A. Leonardi, C. Di Franco, M.J. Lo Faro, G. Palazzo, C. D’Andrea, K. Manoli, G. Franzò, P. Musumeci, B. Fazio, L. Torsi, F. Priolo, ACS Photon. 5, 471 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)CrossRefGoogle Scholar
  17. 17.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)CrossRefGoogle Scholar
  18. 18.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, Z.X.F.R.A. Huggins, Y. Cui, in Mater. Sustain. Energy (2010), pp. 187–191Google Scholar
  19. 19.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004)CrossRefGoogle Scholar
  20. 20.
    J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006)CrossRefGoogle Scholar
  21. 21.
    V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Adv. Mater. 21, 2681 (2009)CrossRefGoogle Scholar
  22. 22.
    C. D’Andrea, M.J. Lo Faro, G. Bertino, P.M. Ossi, F. Neri, S. Trusso, P. Musumeci, M. Galli, N. Cioffi, A. Irrera, F. Priolo, B. Fazio, Nanotechnology 27, 375603 (2016)CrossRefGoogle Scholar
  23. 23.
    M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, J. Phys. Chem. C 112, 4444 (2008)CrossRefGoogle Scholar
  24. 24.
    M.J. Lo Faro, A.A. Leonardi, D. Morganti, B. Fazio, C. Vasi, P. Musumeci, F. Priolo, A. Irrera, Nanomaterials 8, 569 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Rotter, S. Gigan, Rev. Mod. Phys. 89, 015005 (2017)CrossRefGoogle Scholar
  26. 26.
    M.J. Mendes, A. Araújo, A. Vicente, H. Águas, I. Ferreira, E. Fortunato, R. Martins, Nano Energy 26, 286 (2016)CrossRefGoogle Scholar
  27. 27.
    B. Fazio, A. Irrera, S. Pirotta, C. D’Andrea, S. Del Sorbo, M.J. Lo Faro, P.G. Gucciardi, M.A. Iatì, R. Saija, M. Patrini, P. Musumeci, C. Salvatore Vasi, D.S. Wiersma, M. Galli, F. Priolo, Nat. Photon. 11, (2017)Google Scholar
  28. 28.
    E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Yang, F. Luo, T.S. Kao, X. Li, G.W. Ho, J. Teng, X. Luo, M. Hong, Light Sci. Appl. 3, e185 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Lesne, M. Laguës, Scale Invariance: From Phase Transitions to Turbulence (Springer, Berlin, 2012)CrossRefGoogle Scholar
  31. 31.
    B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Nature 308, 721 (1984)CrossRefGoogle Scholar
  32. 32.
    R.F. Voss, R.B. Laibowitz, E.I. Alessandrini, The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation (Springer, Heidelberg, 1983), pp. 153–168CrossRefGoogle Scholar
  33. 33.
    E.F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, F. Priolo, Appl. Phys. A 102, 13 (2011)CrossRefGoogle Scholar
  34. 34.
    C. D’Andrea, M.J. Lo Faro, P. Musumeci, B. Fazio, F. Iacona, G. Franzò, P. Gucciardi, C. Vasi, F. Priolo, A. Irrera, Phys. Status Solidi C 11, 1622–1625 (2014)CrossRefGoogle Scholar
  35. 35.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011)CrossRefGoogle Scholar
  36. 36.
    M.J. Lo Faro, C. D’Andrea, E. Messina, B. Fazio, P. Musumeci, G. Franzò, P.G. Gucciardi, C. Vasi, F. Priolo, F. Iacona, A. Irrera, Thin Solid Films 613, 59–63 (2016)CrossRefGoogle Scholar
  37. 37.
    M.J. Lo Faro, C. D’Andrea, E. Messina, B. Fazio, P. Musumeci, R. Reitano, G. Franzò, P.G. Gucciardi, C. Vasi, F. Priolo, F. Iacona, A. Irrera, Sci. Rep. 5, 16753 (2015)CrossRefGoogle Scholar
  38. 38.
    B. Fazio, P. Artoni, M.A. Iatì, C. D’Andrea, M.J. Lo Faro, S. Del Sorbo, S. Pirotta, P.G. Gucciardi, P. Musumeci, C.S. Vasi, R. Saija, M. Galli, F. Priolo, A. Irrera, Light Sci. Appl. 5, e16062 (2016)CrossRefGoogle Scholar
  39. 39.
    R.F. Voss, R.B. Laibowitz, E.I. Allessandrini, Phys. Rev. Lett. 49, 1441 (1982)CrossRefGoogle Scholar
  40. 40.
    T.G. Andersson, Gold Bull. 15, 7 (1982)CrossRefGoogle Scholar
  41. 41.
    S. Smirnov, Comptes Rendus l’Académie Des Sci. Ser. I Math. 333, 239 (2001)Google Scholar
  42. 42.
    G.B. Smith, A.I. Maaroof, M.B. Cortie, Phys. Rev. B 78, 165418 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Casiello, R.A. Picca, C. Fusco, L. D’Accolti, A.A. Leonardi, M.J. Lo Faro, A. Irrera, S. Trusso, P. Cotugno, M.C. Sportelli, N. Cioffi, A. Nacci, Nanomaterials 8, 78 (2018)CrossRefGoogle Scholar
  44. 44.
    M. Xu, R.R. Alfano, Opt. Lett. 30, 3051 (2005)CrossRefGoogle Scholar
  45. 45.
    M.G. Donato, O. Brzobohatý, S.H. Simpson, A. Irrera, A.A. Leonardi, M.J. Lo Faro, V. Svak, O.M. Maragò, P. Zemánek, Nano Lett. (2018).  https://doi.org/10.1021/acs.nanolett.8b03978 Google Scholar
  46. 46.
    B. Hua, Q. Lin, Q. Zhang, Z. Fan, Nanoscale 5, 6627 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria Josè Lo Faro
    • 1
    • 2
    • 3
  • Antonio Alessio Leonardi
    • 1
    • 2
    • 3
    • 4
  • Cristiano D’Andrea
    • 1
    • 5
  • Dario Morganti
    • 1
    • 2
  • Paolo Musumeci
    • 2
  • Cirino Vasi
    • 1
  • Francesco Priolo
    • 2
    • 3
    • 6
  • Barbara Fazio
    • 1
  • Alessia Irrera
    • 1
    Email author return OK on get
  1. 1.IPCF-CNRMessinaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  3. 3.MATIS IMM-CNRCataniaItaly
  4. 4.INFNCataniaItaly
  5. 5.IFAC-CNRSesto FiorentinoItaly
  6. 6.Scuola Superiore di CataniaUniversità di CataniaCataniaItaly

Personalised recommendations