Advertisement

Synergism of 1D CoNi chains anchored 2D reduced graphene oxide with strong interfacial interactions to enhance microwave absorption properties

  • Zhongyi Bai
  • Xiaoqin Guo
  • Lei Fan
  • Ka Gao
  • Junwei Liu
  • Wenzheng Song
  • Yang Li
  • Rui Zhang
Article
  • 4 Downloads

Abstract

The reduced graphene oxide (rGO), spherical CoNi/rGO composite and chain-like CoNi/rGO composite were prepared by a facile hydrothermal method at 150 °C for 15 h. Based on the structural information provided by XRD and SEM, we can find that a formation mechanism is associated with the steric-hinerance effect by the surfactant molecules and the magnetic dipole–dipole interaction in the self-assembly process. The microwave absorption properties were also investigated in the 1.0–18.0 GHz frequency range by the vector network analyzer (VNA). The chain-like CoNi/rGO/paraffin composite shows the best microwave absorption properties, and the minimal reflection loss (RLmin) of composite is − 45.95 dB at 9.36 GHz with a thickness of 2.7 mm. The effective absorption (RL < − 10 dB) frequency range could be observed in the frequency of 6.49–6.85 GHz and 8.29–11.88 GHz. The excellent microwave absorption properties of the chain-like CoNi/rGO composite results from the special one-dimensional (1D)/two-dimensional (2D) construction, the multiple polarization and scattering, interfacial polarization and natural resonance. The results show that the chain-like CoNi/rGO composite could be used as a promising electromagnetic wave absorber with characteristics of strong-absorption, wide-band and thin-thickness.

Notes

Acknowledgements

The authors appreciate the financial support from the 2017 University Science and Technology Innovation team of Henan Province (Grant No. 17IRTSTHN005) and the National Natural Science Foundation of China (Grant No. 51672254).

References

  1. 1.
    X. Guo, Z. Bai, B. Zhao, R. Zhang, J. Chen, J. Mater. Sci. Mater. Electron. 27, 8408 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Liang, X. Guo, Z. Bai, B. Zhao, R. Zhang, Powder Technol. 319, 245 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Zhao, G. Shao, B. Fan, Y. Xie, R. Zhang, J. Magn. Magn. Mater. 372, 195 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, X. Wu, W. Zhang, C. Luo, J. Li, Y. Wang, Mater. Res. Bull. 98, 59 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, W. Liu, B. Quan, G. Ji, J. Ma, D. Li, W. Meng, J. Colloid Interface Sci. 508, 462 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Wu, X. Wei, X. Zhou, D. Wu, X. Liu, Y. Ye, Q. Wang, J. Phys. Chem. C 115, 16268 (2011)CrossRefGoogle Scholar
  7. 7.
    C. Xu, G. Liu, H. Chen, Y. Liu, J. Mater. Sci. Mater. Electron. 25, 3716 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Kurlyandskaya, S. Bhagat, C. Luna, M. Vazquez, J. Appl. Phys. 99, 104308 (2006)CrossRefGoogle Scholar
  9. 9.
    X. Guo, Z. Bai, B. Zhao, R. Zhang, J. Chen, J. Electron. Mater. 46, 2164 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale. 6, 3157 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hua, L. Qu, Phys. Chem. Chem. Phys. 15, 13038 (2013)CrossRefGoogle Scholar
  12. 12.
    G. Sun, H. Wu, Q. Liao, Y. Zhang, Nano Res. 11, 2689 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Carbon. 104, 214 (2016)CrossRefGoogle Scholar
  14. 14.
    G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, ACS Appl. Mater. Interfaces. 5, 12716 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, J. Mater. Chem. 22, 15190 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Zhao, L. Liang, J. Deng, Z. Bai, J. Liu, X. Guo, K. Gao, W. Guo, R. Zhang, CrystEngComm. 19, 6579 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Zhao, B. Fan, G. Shao, B. Wang, X. Pian, W. Li, R. Zhang, Appl. Surf. Sci. 307, 293 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Shen, J. Wu, S. Bai, H. Zhou, J. Alloys Compd. 506, 136 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, ACS Nano. 3, 2653 (2009)CrossRefGoogle Scholar
  20. 20.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C. 1, 765 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Zhu, X. Sun, H. Xue, H. Guo, X. Fan, X. Pan, J. He, J. Mater. Chem. C. 2, 6582 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Ren, S. Huang, W. Fan, T. Liu, Appl. Surf. Sci. 258, 1132 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu, Y. Liu, J. Am. Chem. Soc. 134, 11060 (2012)CrossRefGoogle Scholar
  24. 24.
    E. Cho, J. Huang, C. Li, C. Jian, K. Lee, Carbon. 102, 66 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Lv, Y. Pan, P. Yang, G. Wang, RSC Adv. 6, 55546 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Zhu, H. Xiao, S. Fu, Eur. J. Inorg. Chem. 25, 3947 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Wang, X. Han, X. Zhang, S. Hu, T. Zhang, J. Wang, Y. Du, X. Wang, P. Xu, J. Phys. Chem. C 114, 14826 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Wen, Y. Liu, X. Zhao, J. Cheng, H. Li, J. Magn. Magn. Mater. 354, 7 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Phys. Chem. Chem. Phys. 17, 3796 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Wang, G. Shi, F. Shi, G. Xu, Y. Qi, D. Li, Z. Zhang, Y. Zhang, H. You, RSC Adv. 6, 40844 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Verónica, A. Miguel, D. Correa, H. Alfred, F. Michael, J. Magn. Magn. Mater. 303, 163 (2006)CrossRefGoogle Scholar
  32. 32.
    R. Penn, J. Banfield, Cosmochim. Acta. 63, 1549 (1999)CrossRefGoogle Scholar
  33. 33.
    C. Liu, L. Guo, R. Wang, Y. Deng, H. Xu, S. Yang, Chem. Commun. 23, 2726 (2004)CrossRefGoogle Scholar
  34. 34.
    Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 15, 1946 (2010)CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, S. Or, Z. Zhang, RSC Adv. 1, 1287 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Hou, H. Kondoh, T. Ohta, Chem. Mater. 17, 3994 (2005)CrossRefGoogle Scholar
  37. 37.
    L. Zhu, H. Xiao, W. Zhang, Y. Yang, S. Fu, Cryst. Growth Des. 8, 1113 (2008)CrossRefGoogle Scholar
  38. 38.
    B. Xie, Y. Qian, S. Zhang, S. Fu, W. Yu, Eur. J. Inorg. Chem. 37, 2454 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Deng, S. Li, Y. Zhou, L. Liang, B. Zhao, X. Zhang, R. Zhang, J. Colloid Interface Sci. 509, 406 (2018)CrossRefGoogle Scholar
  40. 40.
    K. Wang, G. Wan, G. Wang, Z. He, S. Shi, L. Wu, G. Wang, J. Colloid Interface Sci. 511, 307 (2018)CrossRefGoogle Scholar
  41. 41.
    Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng, Z. Yang, Q. Chen, P. Wang, L. Zheng, ACS Appl. Mater. Interfaces. 9, 7265 (2017)CrossRefGoogle Scholar
  42. 42.
    B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces. 8, 28917 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Liu, L. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen, D. Peng, Chem. Eng. J. 333, 92 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Chen, X. Liu, X. Ma, Q. Zhuang, Z. Xie, Z. Han, Nanoscale. 6, 6440 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Ma, B. Quan, W. Liu, X. Liang, Y. Zhang, D. Li, Y. Cheng, G. Ji, J. Alloys Compd. 709, 796 (2017)CrossRefGoogle Scholar
  46. 46.
    X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Nanoscale. 7, 12932 (2015)CrossRefGoogle Scholar
  47. 47.
    J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, Nanoscale. 8, 8899 (2016)CrossRefGoogle Scholar
  48. 48.
    P. Wang, L. Cheng, Y. Zhang, L. Zhang, ACS Appl. Mater. Interfaces. 9, 28844 (2017)CrossRefGoogle Scholar
  49. 49.
    B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang, W. Liu, G. Ji, Y. Du, New J. Chem. 41, 1259 (2017)CrossRefGoogle Scholar
  50. 50.
    L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, J. Magn. Magn. Mater. 426, 114 (2017)CrossRefGoogle Scholar
  51. 51.
    B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, Y. Du, ACS Appl. Mater. Interfaces. 9, 9964 (2017)CrossRefGoogle Scholar
  52. 52.
    X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, J. Mater. Chem. C 4, 1860 (2016)CrossRefGoogle Scholar
  53. 53.
    H. Lv, H. Zhang, G. Ji, Z.J. Xu, ACS Appl. Mater. Interfaces. 8, 6529 (2016)CrossRefGoogle Scholar
  54. 54.
    Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Y. Zhao, J. Cao, Y. Du, J. Alloy. Compd. 704, 289 (2017)CrossRefGoogle Scholar
  55. 55.
    W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Chem. Eng. J. 313, 734 (2017)CrossRefGoogle Scholar
  56. 56.
    B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Nano Res. 10, 331 (2017)CrossRefGoogle Scholar
  57. 57.
    B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, J. Mater. Sci. Mate. Electron. 26, 5393 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhongyi Bai
    • 1
    • 2
  • Xiaoqin Guo
    • 1
    • 2
  • Lei Fan
    • 1
    • 2
  • Ka Gao
    • 1
    • 2
  • Junwei Liu
    • 1
    • 2
  • Wenzheng Song
    • 1
    • 2
  • Yang Li
    • 2
    • 3
  • Rui Zhang
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringZhengzhou University of AeronauticsZhengzhouChina
  2. 2.Henan Key Laboratory of Aeronautical Materials and Application TechnologyZhengzhou University of AeronauticsZhengzhouChina
  3. 3.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations