Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18733–18741 | Cite as

Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method

  • Vrushali S. Dongle
  • Akshata A. Dongare
  • Navaj B. Mullani
  • Pravin S. Pawar
  • Prashant B. Patil
  • Jaeyeong Heo
  • Tae Joo Park
  • Tukaram D. Dongale
Article
  • 88 Downloads

Abstract

In the present report, a simple and cost-effective successive ionic layer adsorption and reaction method is employed to develop self-rectifying ZnO thin film memory device. The nature of pinched hysteresis loop and frequency dependent I–V characteristics depicts that the developed device behaves like a memristive device. Moreover, significant pinched hysteresis loop at 1 MHz was observed which could be further exploited for the development of new class of high-frequency circuits by using ZnO memristive device. The observed analog memory with scan rate dependent synaptic weights behavior suggests that the ZnO memristive device is a potential candidate for the development of electronic synaptic devices for neuromorphic computing application. Furthermore, multilevel resistive switching with good memory window was obtained at 0.2 V read voltage. The developed device switched successfully in consecutive 10 k resistive switching cycles and can retain multilevel resistance states over 1000 s without any observable degradation in the resistance states. The insights drawn from electrical characterization indicates that the device charge and charge–magnetic flux relations depend upon the frequency of the applied signal. Furthermore, we have presented the criteria for differentiating the experimental device as a memristor or memristive device based on the nature of time domain charge and double valued charge–magnetic flux relation. The resistive switching effect of the present device is manifested due to the unified effect of the Ohmic and Schottky conduction mechanisms.

Notes

Acknowledgements

This work was supported by funding from the Shivaji University, Kolhapur under the ‘Research Initiation Scheme’ and by the MOTIE (Ministry of Trade, Industry & Energy) (No. 10053098) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to disclose.

References

  1. 1.
    Y. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. ‎Adv. Phys. 60(2), 145–227 (2011)Google Scholar
  2. 2.
    T.D. Dongale, K.P. Patil, S.B. Mullani, K.V. More, S.D. Delekar, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Investigation of process parameter variation in the memristor-based resistive random access memory (RRAM): effect of device size variations. Mater. Sci. Semicond. Process. 35, 174–180 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)CrossRefGoogle Scholar
  4. 4.
    X. Hu, S. Duan, L. Wang, X. Liao, Memristive crossbar array with applications in image processing. Sci. China Inf. Sci. 55(2), 461–472 (2012)CrossRefGoogle Scholar
  5. 5.
    Q. Xia, W. Robinett, M. Cumbie, N. Banerjee, T. Cardinali, J. Yang, W. Wu, X. Li, W. Tong, D. Strukov, G. Snider, Memristor—CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  7. 7.
    L.O. Chua, S.M. Kang, Memristive devices and systems, Proc. IEEE 64(2), 209–223 (1976)CrossRefGoogle Scholar
  8. 8.
    T.D. Dongale, K.V. Khot, S.V. Mohite, N.K. Desai, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM, Int. Nano Lett. 7(3), 209–216 (2017)CrossRefGoogle Scholar
  9. 9.
    K.H. Choi, M. Mustafa, K. Rahman, B.K. Jeong, Y.H. Doh, Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies. Appl. Phys. A 106(1), 165–170 (2012)CrossRefGoogle Scholar
  10. 10.
    T.D. Dongale, K.V. Khot, S.S. Mali, P.S. Patil, P.K. Gaikwad, R.K. Kamat, P.N. Bhosale, Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Mater. Sci. Semicond. Process. 40, 523–526 (2015)CrossRefGoogle Scholar
  11. 11.
    X.D. Gao, X.M. Li, W.D. Yu, Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method. Appl. Surf. Sci. 229(1), 275–281 (2004)CrossRefGoogle Scholar
  12. 12.
    P.S. Pawar, R.S. Tikke, V.B. Patil, N.B. Mullani, P.P. Waifalkar, K.V. Khot, A.M. Teli, A.D. Sheikh, T.D. Dongale, A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Mater. Sci. Semicond. Process. 71, 102–108 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Li, F. Zeng, C. Chen, H. Liu, G. Tang, S. Gao, C. Song, Y. Lin, F. Pan, D. Guo, Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1(34), 5292–5298 (2013)CrossRefGoogle Scholar
  14. 14.
    T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Raghavan, Performance and reliability trade-offs for high-κ RRAM. Microelectron. Reliab. 54(9–10), 2253–2257 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Fantini, L. Goux, R. Degraeve, D. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y. Chen, B. Govoreanu, M. Jurczak, Intrinsic switching variability in HfO2 RRAM. In 5th IEEE International Memory Workshop (IMW) (2013), p. 30–33Google Scholar
  18. 18.
    T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015)CrossRefGoogle Scholar
  19. 19.
    T. Driscoll, J. Quinn, S. Klein, H.T. Kim, B.J. Kim, Y.V. Pershin, M. Di Ventra, D.N. Basov, Memristive adaptive filters. Appl. Phys. Lett. 97(9), 093502 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Du, Y. Shuai, W. Luo, C. Mayr, R. Schüffny, O.G. Schmidt, H. Schmidt, Practical guide for validated memristance measurements. Rev. Sci. Instrum. 84(2), 023903 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vrushali S. Dongle
    • 1
  • Akshata A. Dongare
    • 1
  • Navaj B. Mullani
    • 2
  • Pravin S. Pawar
    • 3
  • Prashant B. Patil
    • 4
  • Jaeyeong Heo
    • 3
  • Tae Joo Park
    • 2
  • Tukaram D. Dongale
    • 1
  1. 1.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanRepublic of Korea
  3. 3.Department of Materials Science and Engineering, Optoelectronics Convergence Research CenterChonnam National UniversityGwangjuRepublic of Korea
  4. 4.Department of Physics, The New CollegeShivaji UniversityKolhapurIndia

Personalised recommendations