Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18727–18732 | Cite as

Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping

  • Jiaran Li
  • Jingtao Xu
  • Hongxiang Wang
  • Guo-Qiang Liu
  • Xiaojian Tan
  • Hezhu Shao
  • Haoyang Hu
  • Jun Jiang
Article
  • 90 Downloads

Abstract

Polycrystalline Sn1−xCuxSe samples have been prepared using hot pressing to study the Cu doping effect on carrier concentration in SnSe. Different from Ag, Cu doping decreases the carrier concentration of SnSe at room temperature. The carrier concentration of Cu doped samples increases obviously with temperature, becomes larger than the pristine sample above 523 K, and approaches the values of Na doped SnSe at 773 K. The enhanced carrier concentration leads to better electrical conductivity, resulting in higher power factors at high temperatures. Due to carrier optimization by Cu, a peak ZT of 0.66 is achieved in Sn0.98Cu0.02Se at 813 K.

Notes

Acknowledgements

The authors thank K. Peng and Prof. X. Zhou at Chongqing University for the Hall measurement. This work was supported by the Natural Science Foundation of Zhejiang Province (LY18E020017, and LY18A040008), Zhejiang Provincial Science Fund for Distinguished Young Scholars (LR16E020001), and the National Key Research and Development Program of China (2017YFC0111602).

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008)CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  3. 3.
    D.M. Rowe, Handbook of Thermoelectric (CRC Press, Boca Raton, 1995)CrossRefGoogle Scholar
  4. 4.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, J. Mater. Chem. A 3, 4555 (2015)CrossRefGoogle Scholar
  6. 6.
    G.J. Tan, L.D. Zhao, F.Y. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006–7017 (2014)CrossRefGoogle Scholar
  7. 7.
    L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)CrossRefGoogle Scholar
  8. 8.
    K.L. Peng, X. Lu, H. Zhan, S. Hui, X.D. Tang, G.W. Wang, J.Y. Dai, C. Uher, G.Y. Wang, X.Y. Zhou, Energy Environ. Sci. 9, 454 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Wu, L.J. Wu, D.S. He, L.D. Zhao, W. Li, M.H. Wu, M. Jin, J.T. Xu, J. Jiang, L. Huang, Y.M. Zhu, M.G. Kanatzidis, J.Q. He, Nano Energy 35, 321–330 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Jin, H.Z. Shao, H.Y. Hu, D.B. Li, J.T. Xu, G.Q. Liu, H. Shen, J.Y. Xu, H.C. Jiang, J. Jiang, J. Cryst. Growth 460, 112–116 (2017)CrossRefGoogle Scholar
  11. 11.
    X. Wang, J.T. Xu, G.Q. Liu, X.J. Tan, D.B. Li, H.Z. Shao, T.Y. Tan, J. Jiang, NPG Asia Mater. 9, e426 (2017)CrossRefGoogle Scholar
  12. 12.
    D.B. Li, X.J. Tan, J.T. Xu, G.Q. Liu, M. Jin, H.Z. Shao, H.J. Huang, J.F. Zhang, J. Jiang, RSC Adv. 7, 17906–17912 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.J. Fu, J.T. Xu, G.Q. Liu, J.K. Yang, X.J. Tan, Z. Liu, H.M. Qin, H.Z. Shao, H.C. Jiang, B. Liang, J. Jiang, J. Mater. Chem. C 4, 1201 (2016)CrossRefGoogle Scholar
  14. 14.
    P.C. Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y.Y. Chen, A.M. Rao, Nature 539, E1 (2016)CrossRefGoogle Scholar
  15. 15.
    Z.H. Ge, D.S. Song, X.Y. Chong, F.S. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714–9720 (2017)CrossRefGoogle Scholar
  16. 16.
    G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, J. Am. Chem. Soc. 138, 13647–13654 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.X. Chen, Z.H. Ge, M.J. Yin, D. Feng, X.Q. Huang, W.Y. Zhao, J.Q. He, Adv. Funct. Mater. 26, 6836–6845 (2016)CrossRefGoogle Scholar
  18. 18.
    J.C. Li, D. Li, X.Y. Qin, J. Zhang, Scr. Mater. 126, 6–10 (2017)CrossRefGoogle Scholar
  19. 19.
    Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z.F. Ren, Adv. Energy Mater. 5, 1500360 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Wang, J.T. Xu, G.Q. Liu, Y.J. Fu, Z. Liu, X.J. Tan, H.Z. Shao, H.C. Jiang, T.Y. Tan, J. Jiang, Appl. Phys. Lett. 108, 083902 (2016)CrossRefGoogle Scholar
  21. 21.
    K.L. Peng, B. Zhang, H. Wu, X.L. Cao, A. Li, D.F. Yang, X. Lu, G.Y. Wang, X.D. Han, C. Uher, X.Y. Zhou, Mater. Today (2017)Google Scholar
  22. 22.
    Q. Zhang, E.K. Chere, J.Y. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z.F. Ren, Adv. Energy Mater. 5, 12 (2015)Google Scholar
  23. 23.
    L.J. Zhang, J.L. Wang, Q. Sun, P. Qin, Z.X. Cheng, Z.H. Ge, Z. Li, S.X. Dou, Adv. Energy Mater. 7, 1700573 (2017)CrossRefGoogle Scholar
  24. 24.
    E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4, 1848 (2016)CrossRefGoogle Scholar
  25. 25.
    T.R. Wei, G.J. Tan, X.M. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.R. Yang, W.H. Chen, C.J. Liu, J. Elect. Mater. 46, 2964 (2017)CrossRefGoogle Scholar
  27. 27.
    T.R. Wei, C.F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J.F. Li, Phys. Chem. Chem. Phys. 17, 30102 (2015)CrossRefGoogle Scholar
  28. 28.
    H.Q. Leng, M. Zhou, J. Zhao, Y. Han, L.J. Li, Electron. Mater. 45, 527 (2016)CrossRefGoogle Scholar
  29. 29.
    B.W. Cai, J.H. Li, H. Sun, P. Zhao, F.R. Yu, L. Zhang, D.L. Yu, Y.J. Tian, B. Xu, J. Alloys Compd. 08, 223 (2017)Google Scholar
  30. 30.
    H.Q. Leng, M. Zhou, J. Zhao, Y.M. Han, L.F. Li, RSC Adv. 6, 9112 (2016)CrossRefGoogle Scholar
  31. 31.
    C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014)CrossRefGoogle Scholar
  32. 32.
    N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, J. Alloys Compd. 668, 152–158 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Gao, G.Y. Xu, Intermetallics 89, 40–45 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Shi, K. Zheng, M. Hong, W. Liu, R. Moshawan, Y. Wang, X. Qu, Z.-G. Chen, J. Zou, Chem. Sci.  https://doi.org/10.1039/C8SC02397B (2018)CrossRefGoogle Scholar
  35. 35.
    P.J. Price, Philos. Mag. 46, 1252 (1955)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ningbo Institute of Materials Technology and EngineeringChinese Academy of ScienceNingboChina
  2. 2.Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhouChina

Personalised recommendations