Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18718–18726 | Cite as

Dependence of photoluminescence on doping concentration of Ho3+ in nanocrystalline La(OH)3

  • V. Anslin Ferby
  • Mohamed Bououdina
  • A. Moses Ezhil Raj
Article

Abstract

Pure and Ho3+ doped La(OH)3 phosphor nanoparticles have been synthesized through auto-combustion method. XRD patterns exhibited sharp peaks indicating the formation of highly crystalline hexagonal lattice with cell constants a = 6.5218 Ǻ and c = 3.8460 Ǻ. The dissolution of Ho3+ ions within La(OH)3 host lattice resulted increase in lattice parameters and unit cell volume. Optical properties have been altered with Ho3+ doping; the band gap increases from 4.25 eV for pure up to 5.48 eV for 10 wt% Ho doped samples. Green emission around 495, 506, 520, 535 and 544 nm corresponded to (5F4, 5S2) → 5I8 transition, in which the excited electrons nonradioactively transferred to the level 5F5 and then radiate the energy on transferring to the ground state. Observed intense green emission is due to participation of more number of Ho3+ ions in the excitation process and the populations of the ions in the excited states. The CIE coordinate values confirm that Ho-doped La(OH)3 phosphors are relatively useful for green emission photonic devices. The enhancement in the lifetime of 5F4/5S2 level of Ho3+ ion is a clear evidence for an increase in the emission intensity. The improvement in the crystallinity has resulted in an increase in the lifetime of the emitting levels, and thereby an enhancement of the quick excitation, energy transfer and radiative transitions.

Notes

Funding

This work was supported by University Grants Commission [Grant No. F. MRP-3870/11 (MRP/UGC-SERO)]

References

  1. 1.
    M. Ajmal, T.S. Atabaev, Opt. Mater. 35, 1288 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Singh, A. Singh, D. Kumar, O. Prakash, S. Rai, Appl. Phys. B 98, 173 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Park, S. Park, C. Kim, H. Park, S. Choi, J. Mater. Sci. Lett. 20, 2231 (2001)CrossRefGoogle Scholar
  4. 4.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC Press, Boca Raton, 2006), pp. 9–77Google Scholar
  5. 5.
    A. Pandey, V.K. Rai, Appl. Phys. B 109, 611 (2012)CrossRefGoogle Scholar
  6. 6.
    X. Liu, L. Yan, J. Zou, J. Electrochem. Soc. 157, 1 (2010)CrossRefGoogle Scholar
  7. 7.
    G. Sobon, T. Martynkien, K. Tarnowski, P. Mergo, J. Sotor, Photon. Res. 5, 151 (2017)CrossRefGoogle Scholar
  8. 8.
    W. Cao, F. Huang, T. Wang, R. Ye, R. Lei, Y. Tian, J. Zhang, S. Xu, Opt. Mater. 75, 695 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Ajmal, T. Ali, M.A. Khan, S. Ahmad, S.A. Mian, A. Waheed, S. Ali, Mater. Today Proc. 4, 4900 (2017)CrossRefGoogle Scholar
  10. 10.
    S.P. Tiwari, S. Singh, A. Kumar, K. Kumar, AIP Conf. Proc. 1728, 020137 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Malleshappa, H. Nagabhushana, D. Kavyashree, S.C. Prashantha, S.C. Sharma, H.B. Premkumar, C. Shivakumara, Spectrochim. Acta Part A 145, 63 (2015)CrossRefGoogle Scholar
  12. 12.
    S.C. Lal, A. Rajan, G. Subodh, Mater. Today Proc. 4, 4396 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Tang, W. Zhao, B. Fan, Adv. Mater. Res. 683, 297 (2013)CrossRefGoogle Scholar
  14. 14.
    F. Auzel, Chem. Rev. 104, 139 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Sivakumar, F.C.J.M. van Veggel, P.S. May, J. Am. Chem. Soc. 129, 620 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Milliez, A. Rapaport, M. Bass, A. Cassanho, H.P. Jenssen, J. Disp. Technol. 2, 307 (2006)CrossRefGoogle Scholar
  17. 17.
    J.A. Capobianco, V. Vetrone, J.C. Boyer, A. Speghini, M. Bettinelli, Opt. Mater. 19, 259 (2002)CrossRefGoogle Scholar
  18. 18.
    D.Q. Chen, Y.S. Wang, K.L. Zheng, T.L. Guo, Y.L. Yu, P. Huang, Appl. Phys. Lett. 91, 251903 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Sivakumar, M. Raudsepp, J. Am. Chem. Soc. 127, 12464 (2005)CrossRefGoogle Scholar
  20. 20.
    G. Liu, H. Zhuang, X. Chen, Nano lett. 2, 535 (2002)CrossRefGoogle Scholar
  21. 21.
    Q. Lu, F. Guo, L. Sun, A. Li, L. Zhao, J. Appl. Phys. 103, 103 (2008)Google Scholar
  22. 22.
    R.T. Wegh, H. Donkur, K.D. Oskam, A. Meijerink, Science 283, 663 (1999)CrossRefGoogle Scholar
  23. 23.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  24. 24.
    H.M. Rietveld, Acta. Cryst. 22, 151 (1967)CrossRefGoogle Scholar
  25. 25.
    R.A. Young, Introduction to the Rietveld Method (Oxford University Press, Oxford, 1993)Google Scholar
  26. 26.
    J.C. Osuwa, C.I. Oriaku, Chalcog. Lett. 7, 383 (2010)Google Scholar
  27. 27.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New Jercy, 1971)Google Scholar
  28. 28.
    A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
  29. 29.
    J.Y. Li, Luminescent Materials of Rare Earths and Their Applications (Chemical Industry, Beijing, 2003), p. 8Google Scholar
  30. 30.
    C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, Z.L. Wang, Adv. Mater. 19, 470–474 (2007)CrossRefGoogle Scholar
  31. 31.
    I. Etchart, I. Hernandez, A. Huignard, M. Berard, W.P. Gillin, R.J. Curry, A.K. Cheetham, J. Mater. Chem. 21, 1387 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Pandey, V.K. Rai, R. Dey, K. Kumar, Mater. Chem. Phys. 139, 483 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Wang, W. Zhang, Y. Xu, L. Xing, Opt. Laser Technol. 58, 52 (2014)CrossRefGoogle Scholar
  34. 34.
    C.S. Lim, J. Phys. Chem. Solids 78, 65 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Pandey, V.K. Rai, Dalton Trans. 42, 11005 (2013)CrossRefGoogle Scholar
  36. 36.
    X. Li, J. Zhu, Z. Man, Y. Ao, H. Chen, Sci. Rep. 4, 4446 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Yu, Y. Yang, R. Fan, D. Liu, L. Wei, S. Chen, L. Li, B. Yang, W. Cao, Inorg. Chem. 53, 8045 (2014)CrossRefGoogle Scholar
  38. 38.
    F. Lahoz, I.R. Martin, D. Alonso, Phys. Rev. B 71, 045115 (2005)CrossRefGoogle Scholar
  39. 39.
    F. Lahoz, I.R. Martin, A. Briones, J. Appl. Phys. 95, 2957 (2004)CrossRefGoogle Scholar
  40. 40.
    F.Z. Yang, G.S. Yi, D.P. Chen, J. Cheng, Chem. J. Chin. Univ. 25, 1589 (2004)Google Scholar
  41. 41.
    H.X. Jiang, J.Y. Lin, Opto-Electron. Rev. 10, 271 (2002)Google Scholar
  42. 42.
    S.L. Issler, C.C. Torardi, J. Alloy. Comp. 229, 54 (1995)CrossRefGoogle Scholar
  43. 43.
    U.E. Auzel, Up-Conversion by Energy Transfer (World Science, Singapore, 1985)Google Scholar
  44. 44.
    A. Meijerink, G. Blasse, J. Lumin. 43, 283 (1989)CrossRefGoogle Scholar
  45. 45.
    R.S. Yadav, R.V. Yadav, A. Bahadur, S.B. Rai, RSC Adv. 6, 51768 (2016)CrossRefGoogle Scholar
  46. 46.
    W.J. Minscalo, J. Lightwave Technol. 9, 234 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Anslin Ferby
    • 1
    • 2
  • Mohamed Bououdina
    • 3
  • A. Moses Ezhil Raj
    • 1
    • 2
  1. 1.Department of Physics and Research CentreScott Christian College (Autonomous)NagercoilIndia
  2. 2.Manonmaniam Sundaranar UniversityTirunelveliIndia
  3. 3.Department of Physics, College of ScienceUniversity of BahrainZallaqBahrain

Personalised recommendations