Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18699–18707 | Cite as

Formation of unique three-dimensional interpenetrating network structure with a ternary composite

  • Xiaomin Wang
  • Xinliang Fang
  • Xiaoyun Liu
  • Qibing Pei
  • Zhong-Kai Cui
  • Shifeng Deng
  • Jinlou Gu
  • Qixin Zhuang
Article
  • 96 Downloads

Abstract

Ternary composite of reduced graphene oxide/multi-walled carbon nanotubes (RGO/MWCNT)/polyimide (PI) with high-performance mechanical and electrical properties was synthesized via in situ polymerization. The unique three-dimensional interpenetrating network structure conferred the conductive pathways for electrons, resulting from the strong interfacial covalent bonds between RGO/MWCNT and the PI matrix. The electrical conductivity of (RGO/MWCNT)/PI reached 4.4 × 10− 4 S m−1 with the filler loading concentration at an extremely low value (0.2 wt%), which was significantly higher than that of the neat PI. The (RGO/MWCNT)/PI composite films exhibited high tensile strength (up to 462 MPa) and tensile modulus (260 MPa). Furthermore, the introduction of RGO/MWCNT enhanced the thermal stability of the (RGO/MWCNT)/PI composites (from 579 to 623 °C). The composite film is expected to be extensively applied in the field of electronics, solar cells and biosensors.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51573045, 51773060) and the International Collaboration Research Program of Science and Technology Commission of Shanghai (16520722000).

Supplementary material

10854_2018_9993_MOESM1_ESM.docx (679 kb)
Supplementary material 1 (DOCX 678 KB)

References

  1. 1.
    Y.-H. Chou, C.-L. Tsai, W.-C. Chen, G.-S. Liou, Polym. Chem. 5, 6718–6727 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Chen, R. Pfattner, Z. Bao, Adv. Electron. Mater. 3, 1600397 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Weathers, Z.U. Khan, R. Brooke, D. Evans, M.T. Pettes, J.W. Andreasen, X. Crispin, L. Shi, Adv. Mater. 27, 2101–2106 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Chem. Soc. Rev. 44, 6684–6696 (2015)CrossRefGoogle Scholar
  5. 5.
    B.-S. Yim, J.-M. Kim, J. Mater. Sci.: Mater. Electron. 27, 9159–9171 (2016)Google Scholar
  6. 6.
    H. Feng, W. Ma, Z.-K. Cui, X. Liu, J. Gu, S. Lin, Q. Zhuang, J. Mater. Chem. A 5, 8705–8713 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26, 849–864 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Gao, G. Chen, Compos. Sci. Technol. 124, 52–70 (2016)CrossRefGoogle Scholar
  9. 9.
    C.N. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 27, 2100–2106 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Cao, C. Chen, Q. Zhao, N. Zhang, Q. Lu, X. Wang, Z. Niu, J. Chen, Adv. Mater. 28, 9629–9636 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Xu, J. Liu, Y. Chen, C.-L. Li, J. Tang, Q. Li, J. Mater. Sci.: Mater. Electron. 28, 10674–10683 (2017)Google Scholar
  13. 13.
    P. Yang, X. Ma, X. Ni, J. Mater. Sci.: Mater. Electron. 28, 3695–3702 (2016)Google Scholar
  14. 14.
    L. Yu, C. Shearer, J. Shapter, Chem. Rev. 116, 13413–13453 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Chen, X. Cui, Y. Zhu, W. Jiang, K. Sui, Carbon 114, 441–448 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Jin, M. Feng, K. Jia, X. Liu, J. Mater. Sci.: Mater. Electron. 26, 5152–5160 (2015)Google Scholar
  17. 17.
    O.-K. Park, J.-Y. Hwang, M. Goh, J.H. Lee, B.-C. Ku, N.-H. You, Macromolecules 46, 3505–3511 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Ounaies, Compos. Sci. Technol. 63, 1637–1646 (2003)CrossRefGoogle Scholar
  19. 19.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Koganemaru, Y. Bin, Y. Agari, M. Matsuo, Adv. Funct. Mater. 14, 842–850 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8, 12977–12989 (2016)CrossRefGoogle Scholar
  22. 22.
    J.Y. Oh, G.H. Jun, S. Jin, H.J. Ryu, S.H. Hong, ACS Appl. Mater. Interfaces 8, 3319–3325 (2016)CrossRefGoogle Scholar
  23. 23.
    D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh, V.T. Le, … Y.H. Lee, Acs Nano 9, 2018–2027 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Wang, R. Wei, L. Tong, X. Liu, J. Mater. Sci.: Mater. Electron. 28, 3978–3986 (2016)Google Scholar
  25. 25.
    K. Zhang, X. Gao, Q. Zhang, X. Chen, J. Mater. Sci.: Mater. Electron. 29, 3401–3410 (2017)Google Scholar
  26. 26.
    X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005–10012 (2015)CrossRefGoogle Scholar
  27. 27.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958) 1339-CrossRefGoogle Scholar
  28. 28.
    Z. Xie, Q. Zhuang, Q. Wang, X. Liu, Y. Chen, Z. Han, Polymer 52, 5271–5276 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, S. Zhang, X. Liu, Q. Pei, J. Qian, Q. Zhuang, Z. Han, Macromolecules 48, 365–372 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Sun, G. Wang, X. Li, Q. Cheng, C. Li, Ind. Eng. Chem. Res. 51, 3981–3987 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Han, Y. Lu, Carbon 45, 2394–2399 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  33. 33.
    J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C.M. Ma, J. Mater. Chem. 21, 13569 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  35. 35.
    T.K. Gupta, M. Choosri, K.M. Varadarajan, S. Kumar, J. Mater. Sci., (2018)Google Scholar
  36. 36.
    W. Chou, C. Wang, C. Chen, Compos. Sci. Technol. 68, 2208–2213 (2008)CrossRefGoogle Scholar
  37. 37.
    H.W. Ha, A. Choudhury, T. Kamal, D.H. Kim, S.Y. Park, ACS Appl. Mater. Interfaces 4, 4623–4630 (2012)CrossRefGoogle Scholar
  38. 38.
    A. Hussein, K. Youssef, Yasser, W.W. Abdel-Monem, Diab, Poly. Compos. 38(11) (2016)Google Scholar
  39. 39.
    J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206–209 (2008)CrossRefGoogle Scholar
  40. 40.
    P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22, 055705 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Special Functional Polymeric Materials and Related Technology, Ministry of Education and Key Laboratory of Advanced Polymer Materials of Shanghai, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Soft Materials Research Laboratory, Department of Materials Science and EngineeringUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Department of ChemistryUniversité de MontréalMontréalCanada

Personalised recommendations