Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18693–18698 | Cite as

Synthesis and dielectric characterisation of triiodide perovskite methylammonium lead iodide for energy applications

  • S. K. Mahapatra
  • N. Saykar
  • I. Banerjee
  • P. R. Hobson
  • A. K. Sharma
  • A. K. Ray
Article

Abstract

Impedance spectroscopic measurements on spin coated 550 nm thick perovskite films sandwiched between titanium oxide (TiO2) deposited on fluorine doped tin oxide (FTO) glass substrates and with a platinum (Pt) counter electrode have been performed to determine the influence of the percentage of PbI2 in methylammonium lead iodide (CH3NH3PbI3) compounds. These compounds with perovskite structure have been synthesized by weaving methylammonium iodide (CH3NH3I) and lead iodide (PbI2) in two different weight ratios of 1:4 and 3:7. The surface grains are found from the scanning electron microscoping images to have become relatively larger with increasing PbI2 content in spincoated perovskite film. Nearly 2% increase in optical band gap has been observed with increasing weight ratio of PbI2 content from 1:4 to 3:7.

Notes

Acknowledgements

This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-13-1-3018. The authors also acknowledge BRNS, Government of India, for funding the work carried out under this paper. The authors are also grateful to Dr Lesley Hanna of the Experimental Techniques Centre, Brunel University London for fruitful discussions and input.

References

  1. 1.
    J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Graetzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, J. Peng, D. Su, X. Chen, Z. Liang, Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl. Mater. Interfaces 7(8), 4471–4475 (2015)CrossRefGoogle Scholar
  3. 3.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRefGoogle Scholar
  4. 4.
    G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Graetzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)CrossRefGoogle Scholar
  5. 5.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014)CrossRefGoogle Scholar
  6. 6.
    J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Li, S.A. Kulkarni, P.P. Boix, E.Z. Shi, A.Y. Cao, K.W. Fu, S.K. Batabyal, J. Zhang, Q.H. Xiong, L.H. Wong, N. Mathews, S.G. Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014)CrossRefGoogle Scholar
  8. 8.
    C.F. Han, K. Wang, X.X. Zhu, H.M. Yu, X.J. Sun, Q. Yang, B. Hu, Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy. J. Phys. D 51(9), 095501 (2018)CrossRefGoogle Scholar
  9. 9.
    Y.X. Zhao, A.M. Nardes, K. Zhu, Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss. 176, 301–312 (2014)CrossRefGoogle Scholar
  10. 10.
    W.Y. Xie, Y.M. Wang, X.P. Zhang, Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead iodide. J. Phys. Chem. Solids 105, 16–22 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.C. Huang, C.S. Tsao, Y.J. Cho, K.C. Chen, K.M. Chiang, S.Y. Hsiao, C.W. Chen, C.J. Su, U.S. Jeng, H.W. Lin, Insight into evolution, processing and performance of multi-length-scale structures in planar heterojunction perovskite solar cells. Sci. Rep. 5, 13657 (2015)CrossRefGoogle Scholar
  12. 12.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Graetzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  13. 13.
    S.F. Zhuo, J.F. Zhang, Y.M. Shi, Y. Huang, B. Zhang, Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem.-Int. Ed. 54(19), 5693–5696 (2015).  https://doi.org/10.1002/anie.201411956 CrossRefGoogle Scholar
  14. 14.
    T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics energy. Environ. Sci. 7(8), 2518–2534 (2014)Google Scholar
  15. 15.
    M. Alidaei, M. Izadifard, M.E. Ghazi, V. Ahmadi, Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers. Mater. Res. Express 5(1), 016412 (2018)CrossRefGoogle Scholar
  16. 16.
    E.L. Simmons, Relation of diffuse reflectance remission function to fundamental optical parameters. Opt. Acta 19(10), 845–851 (1972)CrossRefGoogle Scholar
  17. 17.
    S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2(24), 9221–9225 (2014)CrossRefGoogle Scholar
  18. 18.
    H.Y. Wei, J.Y. Xiao, Y.Y. Yang, S.T. Lv, J.J. Shi, X. Xu, J. Dong, Y.H. Luo, D.M. Li, Q.B. Meng, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93, 861–868 (2015)CrossRefGoogle Scholar
  19. 19.
    S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8(5), 2664–2677 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Liu, C. Gao, X.L. He, Q.Y. Ye, L.Q. Ouyang, D.M. Zhuang, C. Liao, J. Mei, W.M. Lau, Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl. Mater. Interfaces 7(43), 24008–24015 (2015)CrossRefGoogle Scholar
  21. 21.
    H.S. Duan, H.P. Zhou, Q. Chen, P.Y. Sun, S. Luo, T.B. Song, B. Bob, Y. Yang, The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015)CrossRefGoogle Scholar
  22. 22.
    O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, G. Garcia-Belmonte, Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1645–1652 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Mahapatra
    • 1
  • N. Saykar
    • 1
  • I. Banerjee
    • 2
  • P. R. Hobson
    • 3
  • A. K. Sharma
    • 4
  • A. K. Ray
    • 3
  1. 1.Centre for Physical SciencesCentral University of PunjabBathindaIndia
  2. 2.The Department of PhysicsBirla Institute of Technology, MesraRanchiIndia
  3. 3.Department of Electronic and Computer EngineeringBrunel University LondonUxbridgeUK
  4. 4.United States Air Force Research Laboratory, Space Vehicles DirectorateAlbuquerqueUSA

Personalised recommendations