Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18650–18659 | Cite as

Optical properties of highly luminescent, monodisperse, and ultrastable CdSe/V2O5 core/shell quantum dots for in-vitro imaging

  • Amar Nath Yadav
  • Ashwani K. Singh
  • Prem Prakash Sharma
  • Pratima R. Solanki
  • Kedar Singh
Article
  • 42 Downloads

Abstract

Herein, a first report on the formation of high-quality CdSe/V2O5 core/shell quantum dots (QDs). A single-source cluster approach has been adopted to synthesize highly luminescent CdSe and CdSe/V2O5 core/shell QDs. X-ray diffraction pattern depicts a crystal structural phase transformation from Zinc blende to Wurzite for core/shell QDs. Steady-state absorption and emission studies indicate a significant red-shift in both absorption and emission peak after shell growth. Formation of core/shell structures have been confirmed by absorption spectra of CdSe (1–12 h) along with TEM images analysis. Raman studies of core/shell QDs shows a lower wave number shift in phonon frequency which is correlated with lattice contraction and indicates the intensive electron interaction between CdSe and V2O5. Biocompatibility test (with A549 cell line) of CdSe and CdSe/V2O5 core/shell QDs have been carried out to know about toxicity of these QDs and results exhibited a noticeable increase in viability of cell lines for core/shell QDs. These highly luminescent, ultrastable core/shell QDs can be used in many applications such as catalysis, solar cell, and cellular imaging.

Notes

Acknowledgements

We are thankful to SERB, Department of Science and Technology, Govt. of India to provide financial assistance under Project No. EEQ/2016/000652 and PURSE grant. Authors are thankful to UPE-II for providing funding under Project Nos. 58 & 172. Further, AIRF-JNU is heartfully acknowledged for providing characterization facilities. ANY is thankful to UGC, New Delhi for providing fellowship.

Author contributions

ANY carried the synthesis, characterizations and wrote the manuscript with the help of AKS. KS conceived the idea about synthesis, characterization, assisted in interpretation, conclusions and in the writing of the manuscript. PPS and PRS carried the biocompatibility part and help in the discussion. All authors have given approval to final version of the manuscript.

Compliance with ethical standards

Competing interest

The authors declare no competing financial interests.

Supplementary material

10854_2018_9984_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2840 KB)

References

  1. 1.
    B. Bhattacharya, A. Pandey, CuFeS2 quantum dots and highly luminescent CuFeS2 based core/ shell structures: synthesis, tunability, and photophysics. J. Am. Chem. Soc. 138, 10207–10213 (2016)CrossRefGoogle Scholar
  2. 2.
    E. Hofman, R.J. Robinson, Z.J. Li, B. Dzikouski, W. Zhang, Controlled dopant migration in CdS/ZnS core/shell quantum dots. J. Am. Chem. Soc. 139, 8878–8885 (2017)CrossRefGoogle Scholar
  3. 3.
    W. Zhang, K. Singh, Z. Wang, J.T. Wright, N.S. Dalal, R.W. Meulenberg, G.F. Strouse, Evidence of a ZnCr2Se4 spinal inclusion at the core of a Cr-doped ZnSe quantum dots. J. Am. Chem. Soc. 134, 5577–5585 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Zheng, X.H. Bu, H.W. Lu, Q.C. Zhang, P.Y. Feng, Crystalline superlattices from single-sized quantum dots. J. Am. Chem. Soc. 127, 11963–11965 (2005)CrossRefGoogle Scholar
  5. 5.
    P. Reiss, M. Protiere, L. Li, Core/shell semiconductor crystal. Small 5, 154–168 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Zorn, W.K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, K. Char, Quantum dot block copolymer hybrids with improved properties and their application to quantum dot, light-emitting devices. ACS Nano 3, 1063–1068 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Loef, A.J. Houtepen, E. Talgorn, J. Schoonman, A. Goossens, Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett. 9, 856–859 (2009)CrossRefGoogle Scholar
  8. 8.
    L.F. Shi, V. De Paoli, N. Rosenzweig, Z. Rosenzweig, Synthesis, and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 128, 10378–10379 (2006)CrossRefGoogle Scholar
  9. 9.
    B.S. Shah, P.A. Clark, E.K. Moioli, M.A. Stroscio, J.J. Mao, Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett. 7, 3071–3079 (2007)CrossRefGoogle Scholar
  10. 10.
    W. Zheng, P. Kumar, A. Washington, Z. Wang, N.S. Dalal, G.F. Strouse, K. Singh, Quantum phase transition from superparamagnetic to quantum superparamagnetic state in ultrasmall Cd1–xCr(II)xSe quantum dots? J. Am. Chem. Soc. 134, 2172–2179 (2011)CrossRefGoogle Scholar
  11. 11.
    M.B. Jr, M. Maronne, P. Gin, S. Weiss, A.P. Alivisators, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRefGoogle Scholar
  12. 12.
    W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)CrossRefGoogle Scholar
  13. 13.
    Z. Li, W. Wao, L. Kong, Y. Zhao, L. Li, General method for the synthesis of ultrastable core/shell quantum dots by aluminium doping. J. Am. Chem. Soc. 137, 12430–12433 (2015)CrossRefGoogle Scholar
  14. 14.
    M.A. Hines, P. Guyot-Sionnest, Synthesis, and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)CrossRefGoogle Scholar
  15. 15.
    Y.F. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)CrossRefGoogle Scholar
  16. 16.
    B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008)CrossRefGoogle Scholar
  17. 17.
    A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)CrossRefGoogle Scholar
  18. 18.
    R.A. Hardman, Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)CrossRefGoogle Scholar
  19. 19.
    G.N. Guo, W. Liu, J.G. Liang, H.B. Xu, Z.K.P. He, X.L. Yang, Preparation and characterization of novel cdse quantum dots modified with poly(d,l-lactide. Nanopart. Mater. Lett. 60, 2565–2568 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Wu, H. Wei, B. Ning, Y. Xie, New vanadium oxide nanostructures controlled synthesis and their smart electrical switching. Adv. Mater. 22, 1972–1976 (2010)CrossRefGoogle Scholar
  21. 21.
    U. Schwingenschlogl, V. Eyert, The vanadium Magneli phases VnO2n–1. Ann. Phys. (Leipzig) 13, 475–510 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner, M. Petersen, Geometric and electronic structure of vanadium pentoxide: a density functional bulk and surface study. Phys. Rev. B 59, 10583–10590 (1999)CrossRefGoogle Scholar
  23. 23.
    M.S. Niasari, M.E. Zare, A. Sobhani, Synthesis and characterisation of cadmium selenide nanostructures by simple sonochemical method. Micro Nano Lett. 7, 831–834 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles, classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRefGoogle Scholar
  25. 25.
    S.L. Cumberland, K.M. Hanif, A. Javier, G.A. Khitrov, G.F. Strouse, S.M. Woessner, C.S. Yun, Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS. Nanomater. Chem. Mater. 14, 1576–1584 (2002)CrossRefGoogle Scholar
  26. 26.
    C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003)CrossRefGoogle Scholar
  27. 27.
    D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source. Precursor Chem. Mater. 22, 1437–1444 (2010)CrossRefGoogle Scholar
  28. 28.
    J.J. Li, Y.A. Wang, W.Z. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X.G. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Sobhani, M. Salavati-, Niasari, Synthesis and characterization of CdSe nanostructures by using a new selenium source: Effect of hydrothermal preparation conditions Mater. Res. Bull. 53, 7–14 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Sobhani, M. Salavati-Niasari, CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci. Mater. Electron. 26, 6831–6836 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Jindal, S.M. Giripunje, S.B. Kondawar, P. Koinkar, Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties. J. Phys. Chem. Solids 114, 163–172 (2018)CrossRefGoogle Scholar
  32. 32.
    T.R. Kuo, S.T. Hung, Y.T. Lin, T.L. Chou, M.C. Kuo, Y.P. Kuo, C.C. Chen, Green synthesis of InP/ZnS core/shell quantum dots for application in heavymetal-free light-emitting diodes. Nanoscale Res. Lett. 12, 537 (2017)CrossRefGoogle Scholar
  33. 33.
    I.G. Dance, A. Choy, M.L. Scudder, Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4Mlo(SPh)16] (E = S, Se; M = Zn, Cd): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice. J. Am. Chem. Soc. 106, 6285–6295 (1984)CrossRefGoogle Scholar
  34. 34.
    P.T.K. Chin, J.W. Stouwdam, A.J. Janssen, Highly luminescent ultranarrow Mn-doped ZnSe nanowires. Nano Lett. 9, 745–750 (2009)CrossRefGoogle Scholar
  35. 35.
    L.J. Sung, S. Andre, S.M. Andrew, Optical determination of crystal phase in semiconductor nanocrystals. Nat. Commun. 8, 14849 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Udit, A. Vikas, S. Sameer, Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 15, 5458–5463 (2013)CrossRefGoogle Scholar
  37. 37.
    D. Chen, R. Yi, S. Chen, T. Xu, M.L. Gordin, D. Lv, D. Wang, Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Mater. Sci. Eng. B 185, 7–12 (2014)CrossRefGoogle Scholar
  38. 38.
    A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzains, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, A.L. Efros, Absorption and intensity-dependent photoluminescence measurements on cdse quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993)CrossRefGoogle Scholar
  39. 39.
    A. Minoto, F. Todescato, I. Fortunati, R. Singnorini, J.J. Jasieniak, R. Bozio, Role of core–shell interfaces on exciton recombination in CdSe–CdxZn1–xS quantum dots. J. Phys. Chem. C 118, 24117–24126 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Xie, U. Kolb, J. Li, T. Basche, A. Mews, Synthesis, and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127, 7480–7488 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Jasieniak, L. Smith, J.V. Embden, P. Mulvaney, Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phy. Chem. Soc. 113, 19468–19474 (2009)Google Scholar
  42. 42.
    A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Zhu, N. Song, T. Lian, Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010)CrossRefGoogle Scholar
  44. 44.
    D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS Nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211 (2001)CrossRefGoogle Scholar
  45. 45.
    B.O. Dabbousi, J.R. Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)CrossRefGoogle Scholar
  46. 46.
    S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)CrossRefGoogle Scholar
  47. 47.
    P. Mukharjee, S.J. Lim, T.P. Wrobel, R. Bhargava, A.M. Smith, Measuring and predicting the internal structure of semiconductor nanocrystals through raman spectroscopy. J. Am. Chem. Soc. 138, 10887–10896 (2016)CrossRefGoogle Scholar
  48. 48.
    G. Gouadec, P. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size, and mechanical properties. Prog. Cryst. Growth Charac. 53, 1–56 (2007)CrossRefGoogle Scholar
  49. 49.
    L. Lu, X.L. Xu, W.T. Liang, H.F. Lu, Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness. J. Phys. Condens. Matter 19, 406221 (2007)CrossRefGoogle Scholar
  50. 50.
    R.W. Meulenberg, T. Jennings, G.F. Strouse, Compressive and tensile stress in colloidal semiconductor quantum dots. Phys. Rev. B 70, 235311–235315 (2004)CrossRefGoogle Scholar
  51. 51.
    C.T. Giner, A. Debernardi, M. Cardona, A.I. Ekimov, E.M. Proupin, Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57, 4664–4669 (1998)CrossRefGoogle Scholar
  52. 52.
    G. Scamarcio, M. Lugara, D. Manno, Size-dependent lattice contraction in CdS & Se nanocrystals embedded in glass observed by raman scattering. Phy. Rev. B 45, 13792–13795 (1992)CrossRefGoogle Scholar
  53. 53.
    J.Y. Zhang, X.Y. Wang, M. Xiao, L. Qu, X. Peng, Lattice contraction in free-standing CdSe nanocrystals. Phys. Rev. Lett. 81, 2076–2078 (2002)Google Scholar
  54. 54.
    P. Verma, L. Gupta, S.C. Abbi, K.P. Jain, Confinement effect on the electronic and vibronic properties of CdS0.65Se0.35 nanoparticles grown by thermal annealing. J. Appl. Phys. 88, 4109–4116 (2000)CrossRefGoogle Scholar
  55. 55.
    L.E. Rikans, T. Yamano, Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem.Toxicol. 14, 110–117 (2000)CrossRefGoogle Scholar
  56. 56.
    L.S. Rhoads, W.T. Silkworth, M.L. Roppolo, M.S. Whittingham, Cytotoxicity of nanostructured vanadium oxide on human cells in vitro. Toxicol. In Vitro 24, 292–296 (2010)CrossRefGoogle Scholar
  57. 57.
    K. Pathakoti, H.M. Hwang, H. Xu, Z.P. Aguilar, A. Wang, In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells. J. Environ. Sci. 25, 163–171 (2013)CrossRefGoogle Scholar
  58. 58.
    Y. Wang, B. Si, S. Lu, X. Ma, E. Liu, J. Fan, X. Li, X. Hu, Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution. Nanotechnology 27, 365707 (2016)CrossRefGoogle Scholar
  59. 59.
    V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M.A. Malvindi, G. Vecchio, R. Cingolani, J.L. Nadeau, P.P. Pompa, InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5, 307–317 (2013)CrossRefGoogle Scholar
  60. 60.
    A.M. Evangelou, Vanadium in cancer treatment. Oncology/Hematology 42, 249–265 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amar Nath Yadav
    • 1
  • Ashwani K. Singh
    • 1
  • Prem Prakash Sharma
    • 2
  • Pratima R. Solanki
    • 2
  • Kedar Singh
    • 1
  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Special Centre for NanoscienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations