Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18593–18599 | Cite as

Low-spin Co3+ make great contributions to the magnetism of BiFeO3

  • Yingfang Fan
  • Yunhua Zhou
  • Menglan Shen
  • Xin Xu
  • Zhongchao Wang
  • Weiwei Mao
  • Jian Zhang
  • Jianping Yang
  • Yong Pu
  • Xing’ao Li
Article

Abstract

Various spin states of Co3+ were tested in Co-doped BiFeO3 (BFO) through first-principle method, aimed to reveal the role of spin state transition of Co3+ in developing ferrimagnetism. It is found that low-spin (LS) Co3+ contributed much more to resultant magnetic moment than high-spin (HS) Co3+ (~ 3.914 µB). To explore the electronic origins of the enhanced magnetism, a more detailed analysis is carried out including electronic configuration of HS and LS Co3+ as well as Co–O hybridization. It is demonstrated that the LS Co3+ which is nonmagnetic could destroy the cycloid–dal spin structure of BFO. Moreover, LS Co3+ has vacant 3d orbitals so that the p–d covalency is enhanced and the local ferrimagnetism is improved. The structural origin of the Co3+ spin-state transition is ascribed to the distortion of CoO6 octahedra. To explore the influence of Co doping experimentally, the 8% Co-doped and un-doped BFO powders were prepared. The Hysteresis loops indicated that the substitution of Co led to a slight increase of magnetization, i.e. HS Co3+ made limited contribution to the magnetism of BFO.

Notes

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China [51372119, 51602161], Synergetic Innovation Center for Organic Electronics and Information Displays, the National Synergetic Innovation Center for Advanced Materials (SICAM), the Natural Science Foundation of Jiangsu Province, China [BM2012010], the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions [YX03001], the Natural Science Foundation of Jiangsu Province [BK20150860] NUPTSF [Grant Nos. NY213103, NY214181, NY215077, NY215022].

References

  1. 1.
    C.M. Fernandez-Posada, A. Castro, J.M. Kiat, F. Porcher, O. Pena, M. Alguero, H. Amorin, Nat. Commun. 7, 12772 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Bertinshaw, R. Maran, S.J. Callori, V. Ramesh, J. Cheung, S.A. Danilkin, W.T. Lee, S. Hu, J. Seidel, N. Valanoor, C. Ulrich, Nat. Commun. 7, 12664 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Graf, M. Sepliarsky, M.G. Stachiotti, Phys. Rev. B 94(5), 2469 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Pugaczowa-Michalska, J. Kaczkowski, J. Mater. Sci. 50(18), 6227 (2015)CrossRefGoogle Scholar
  5. 5.
    J.K. Kim, S.S. Kim, W.-J. Kim, A.S. Bhalla, R. Guo, Appl. Phys. Lett. 88(13), 132901 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, J. Alloys Compd. 687, 701 (2016)CrossRefGoogle Scholar
  7. 7.
    Q.J. Wang, Q.H. Tan, Y.K. Liu, J. Alloys Compd. 644, 30 (2015)CrossRefGoogle Scholar
  8. 8.
    Q.-Y. Rong, L.-L. Wang, A.-M. Hu, W.-Z. Xiao, Phys. Status Solidi B 253(2), 279 (2016)CrossRefGoogle Scholar
  9. 9.
    Q.-Y. Rong, W.-Z. Xiao, G. Xiao, A.-M. Hu, L.-L. Wang, J. Alloys Compd. 674, 463 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Yang, S. Lin, X. Fang, X. Gao, M. Zeng, J. Liu, J. Appl. Phys. 114(23), 233912 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Mostafa Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani. J. Mater. Sci. Mater. Electron. 26, 9776 (2015)CrossRefGoogle Scholar
  16. 16.
    N.H. Hong, N. Thu Huong, T.-Y. Kim, S. Goumri-Said, M.B. Kanoun, J. Phys. Chem. C 119(25), 14351 (2015)Google Scholar
  17. 17.
    J. Zhao, X. Zhang, S. Liu, W. Zhang, Z. Liu, J. Alloys Compd. 557, 120 (2013)CrossRefGoogle Scholar
  18. 18.
    V.R. Singh, V.K. Verma, K. Ishigami, G. Shibata, Y. Yamazaki, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, Y. Nakamura, M. Azuma, Y. Shimakawa, J. Appl. Phys. 114(10), 103905 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Sosnowska, W. Schfer, W. Kockelmann, K.H. Andersen, I.O. Troyanchuk, Appl. Phys. A. 74(0), s1040 (2002)CrossRefGoogle Scholar
  20. 20.
    Q.-Y. Rong, L.-L. Wang, W.-Z. Xiao, L. Xu, Physica B 457, 1 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Wu, Comput. Mater. Sci. 112, 459 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Wang, H. Huang, B. Wang, Sci. Adv. Mater. 2(2), 184 (2010)CrossRefGoogle Scholar
  23. 23.
    E.M. Choi, J.E. Kleibeuker, J.L. MacManus-Driscoll, Sci. Rep. 7, 43799 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Sun, Y.W. Fang, J. He, Y. Zhang, R. Qi, Q. He, R. Huang, P. Xiang, X.D. Tang, P. Yang, J. Chu, Y.H. Chu, C.G. Duan, Phys. Rev. B 75(9), 607 (2015)Google Scholar
  25. 25.
    Q.J. Wang, Q.H. Tan, Y.K. Liu, Comput. Mater. Sci. 105, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Iyyappa Rajan, S. Mahalakshmi, S. Chandra, Comput. Mater. Sci. 130, 84 (2017)CrossRefGoogle Scholar
  27. 27.
    V. Singh, D.T. Major, Inorg. Chem. 55(7), 3307 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Ray, A.K. Biswal, S. Acharya, V. Ganesan, D.K. Pradhan, P.N. Vishwakarma, J. Magn. Magn. Mater. 324(23), 4084 (2012)CrossRefGoogle Scholar
  29. 29.
    J.-H. Lee, M.-A. Oak, H.J. Choi, J.Y. Son, H.M. Jang, J. Mater. Chem. 22(4), 1667 (2012)CrossRefGoogle Scholar
  30. 30.
    W.Y. Tong, H.C. Ding, S.J. Gong, X. Wan, C.G. Duan, Sci. Rep. 5, 17993 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Li, X. Fang, M. Cao, Sci. Rep. 6, 24837 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Ma, X. Tang, M. Lu, K. Zheng, W. Mao, J. Zhang, J. Yang, X.A. Li, J. Supercond. Nov. Magn. 28(12), 3593 (2015)CrossRefGoogle Scholar
  33. 33.
    J.A. Barreda-Argüeso, F. Aguado, J. González, R. Valiente, L. Nataf, M.N. Sanz-Ortiz, F. Rodríguez, J. Phys. Chem. C 120(33), 18788 (2016)CrossRefGoogle Scholar
  34. 34.
    I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, V.I. Anisimov, Phys. Rev. B 68(23), 235113 (2003)CrossRefGoogle Scholar
  35. 35.
    M. Verma, K. Ram, AIP Adv. 6(5), 055302 (2016)CrossRefGoogle Scholar
  36. 36.
    N. Gao, W. Chen, R. Zhang, J. Zhang, Z. Wu, W. Mao, J. Yang, X.a. Li, W. Huang, Comput. Theor. Chem. 1084, 36 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Modak, D. Lahiri, S.M. Sharma, J. Phys. Chem. C 120(15), 8411 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Cammarata, J.M. Rondinelli, J. Chem. Phys. 141(11), 114704 (2014)CrossRefGoogle Scholar
  39. 39.
    C.J. Howard, H.T. Stokes, Acta Cryst. B54, 782 (2002)Google Scholar
  40. 40.
    D. Sando, Y. Yang, E. Bousquet, C. Carretero, V. Garcia, S. Fusil, D. Dolfi, A. Barthelemy, P. Ghosez, L. Bellaiche, M. Bibes, Nat. Commun. 7, 10718 (2016)CrossRefGoogle Scholar
  41. 41.
    A.V. Ushakov, S.V. Streltsov, D.I. Khomskii, J. Phys. Condens. Matter 23(44), 445601 (2011)CrossRefGoogle Scholar
  42. 42.
    X.P. Zhang, Y.Z. Cui, B.J. Tan, J.X. Wang, Z.F. Li, G.H. He, RSC Adv. 6(91), 88332 (2016)CrossRefGoogle Scholar
  43. 43.
    G.M. Albino, M. Gálvez-Saldaña, O. Perales-Pérez, Jpn. J. Appl. Phys. 51, 11PG06 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & Telecommunications (NUPT)NanjingPeople’s Republic of China
  2. 2.New Energy Technology Engineering Lab of Jiangsu Province, School of ScienceNanjing University of Posts & Telecommunications (NUPT)NanjingPeople’s Republic of China

Personalised recommendations