Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18011–18019 | Cite as

Mechanism of grain growth and excellent polarization, dielectric relaxtion of La3+, Nd3+ modified PZT nano-films prepared by sol–gel technique

  • Liu Yang
  • De-Yi Zheng
  • Kai-Xin Guo
  • Wan-Nan Zhao
  • Ze-Hui Peng
  • Gui-Gui Peng
  • Tao Zhou
Review
  • 51 Downloads

Abstract

Ferroelectric PbZr0.52Ti0.48O3 film and its partial substitutions by rare earth ions La3+ and Nd3+ Pb0.9(La/Nd)0.1Zr0.52Ti0.48O3, grown on Pt(111)/Ti/SiO2/Si(100) substrates, were prepared via sol–gel and rapid thermal processes. Structural characterization by X-ray diffraction and scanning electron microscopy showed that Pb(Zr0.52Ti0.48)O3 and Pb0.9La0.1(Zr0.52Ti0.48)O3 films are of (111) preferred orientation but Pb0.9Nd0.1(Zr0.52Ti0.48)O3 is more inclined to (100) reflection though both are of tetragonal perovskite structure. The results indicate that the piezoelectric properties of PZT thin films can be improved by doping La3+ and Nd3+ substituted A-site. The d33 can be dramatically improved by doping La3+. Moreover, Pr of Pb(Zr0.52Ti0.48)O3 films reaches up to 120.53 µC/cm2, while the doping samples present relatively inferior ferroelectric hysteresis loops (PrLa = 64.32, PrNd = 53.17 µC/cm2), greater dielectric constants, higher dielectric loss and lower leakage current than the undoped Pb(Zr0.52Ti0.48)O3 sample. And meanwhile, the samples showed a typical non-Debye dielectric spectroscopy of multiple quantum relaxation time distribution observing from the Cole–Cole plot at room temperature.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51762009), the Education Department of Guizhou Province (No. 2017-001).

References

  1. 1.
    I. Coondoo, A.K. Jha, S.K. Agarwal, Enhancement of dielectric characteristics in donor doped Aurivillius SrBi2Ta2O9 ferroelectric ceramics. J. Eur. Ceram. Soc. 27, 253–260 (2007)CrossRefGoogle Scholar
  2. 2.
    P.-H. Xiang, Y. Kinemuchi, K. Watari, Preparation of c-axis-oriented Bi4Ti3O12 thick films by templated grain growth. J. Eur. Ceram. Soc. 27, 663–667 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Xu, C.-A. Wang, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. J. Eur. Ceram. Soc. 32(10), 2647–2652 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Guo, R. Zhang, T. He et al., Multiferroic and in-plane ME coupling properties of BiFeO3 nano-films with substitution of rare earth ions La3+ and Nd3+. J. Rare Earths 34(12), 1228–1233 (2016)CrossRefGoogle Scholar
  5. 5.
    D.H. Minh, N.V. Loi, N.H. Duc et al., Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci. 1, 75–79 (2016)Google Scholar
  6. 6.
    K. Guo, Q. Mou, T. He et al., Ferroelectric, ferromagnetic, magnetodielectric and in-plane ME coupling properties of Pb(Zr0.52Ti0.48)O3-Bi0.9Nd0.1FeO3 bilayer nano-films prepared via sol-gel processing. J. Mater. Sci. Mater. Electron. 28(2), 1971–1975 (2016)CrossRefGoogle Scholar
  7. 7.
    N. Kitamura, T. Mizoguchi, T. Itoh et al., Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O3. J. Solid State Chem. 210, 275–279 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Dutta, A.A. Jeyaseelan, S. Sruthi, Ferroeletric and piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film. Thin Solid Films 562, 190–194 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Wang, X. Zhu, J. Liang et al., Electrohydrodynamic jet printing of PZT thick film micro-scale structures. J. Eur. Ceram. Soc. 35, 3475–3483 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Kainz, B. Bitschnau, F.A. Mautner et al., Comparison of lanthanum and bismuth modification of lead zirconate-lead titanate PZT-A structural and dielectric study. J. Eur. Ceram. Soc. 36, 507–514 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Liu, N. Li, Y. Wang et al., Preparation and properties of 3–1 type PZT ceramics by a self-organization method. J. Eur. Ceram. Soc. 35, 3467–3474 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Prabu, I.S. Banu, S. Gobalakrishnan et al., Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. J. Alloy Compds. 551, 200–207 (2013)CrossRefGoogle Scholar
  13. 13.
    J.S. Cross, K. Shinozaki, T. Yoshioka et al., Characterization and ferroelectricity of Bi and Fe co-doped PZT films. Mat. Sci. Eng. B 173, 18–20 (2010)CrossRefGoogle Scholar
  14. 14.
    U. Helbig, Size effect in low grain size neodymium doped PZT ceramics. J. Eur. Ceram. Soc. 27, 2567–2576 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Pientschke, A. Kuvatov, R. Steinhausen et al., Bipolar strain hysteresis of poled composites with Nd- Mn-doped PZT fibres. J. Eur. Ceram. Soc. 29, 1713–1720 (2009)CrossRefGoogle Scholar
  16. 16.
    S.R. Shannigrahi, F.E.H. Tay, K. Yao et al., Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Eur. Ceram. Soc. 24, 163–170 (2004)CrossRefGoogle Scholar
  17. 17.
    V. Kayasu, M. Ozenbas. The effect of Nb doping on dielectric and ferroelectric properties of PZT thin films prepared by solution deposition. J. Eur. Ceram. Soc. 29, 1157–1163 (2009)CrossRefGoogle Scholar
  18. 18.
    J.K. Juneja, S. Singh, K.K. Raina et al., Study on structural, dielectric, ferroelectric and piezoelectric properties of Ba doped lead zirconate titanate ceramics. J. Phys. B 431, 109–114 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Bedoya, C. Muller, J.L. Baudour et al., Sr-doped PbZr1−xTixO3 ceramic: structural study and field-induced reorientation of ferroelectric domains. Mat. Sci. Eng. B 75, 43–52 (2000)CrossRefGoogle Scholar
  20. 20.
    F. Zhu, J. Qiu, H. Ji et al., Comparative investigations on dielectric, piezoelectric properties and humidity resistance of PZT–SKN and PZT–SNN ceramics. J. Mater. Sci. Mater. Electron. 26(5), 2897–2904 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Cottrell, An Introduction to Metallurgy (Maney Publishing, London, 1967), pp. 134–147Google Scholar
  22. 22.
    S.A.S. Rodrigues, A.G. Rolo, A. Khodorov et al., Determination of residual stress in PZT films produced by laser ablation with X-ray diffraction and Raman spectroscopy. J. Eur. Ceram. Soc. 30, 521–524 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Gonnard, M. Troccaz, Dopant distribution between A and B sites in the PZT ceramics of types ABO3. J. Solid State Chem. 23, 321–326 (1978)CrossRefGoogle Scholar
  24. 24.
    J.A. Dean, Lange’s Chemistry Handbook, Version 16th (McGraw-Hill Professional, New York, 2007), pp. 90–98Google Scholar
  25. 25.
    D. Wang, S.A. Rocks, R.A. Dorey, Electrohydrodynamic atomization deposition of PZT sol–gel slurry and sol infiltration on the films. J. Eur. Ceram. Soc. 32, 1651–1658 (2012)CrossRefGoogle Scholar
  26. 26.
    D. Fasquelle, J.C. Carru, Electrical characterizations of PZT ceramics in large frequency and temperature ranges. J. Eur. Ceram. Soc. 28, 2071–2074 (2008)CrossRefGoogle Scholar
  27. 27.
    J Fialka, P. Benes, L. Michlovska et al., Measurement of thermal depolarization effects in piezoelectric coefficients of soft PZT ceramics via the frequency and direct methods. J. Eur. Ceram. Soc. 36, 2727–2738 (2016)CrossRefGoogle Scholar
  28. 28.
    J.-W. Kim, J.G. Heinrich, Influence of processing parameters on microstructure and ferroelectric properties of PZT-coated SiC fibers. J. Eur. Ceram. Soc. 25, 1637–1645 (2005)CrossRefGoogle Scholar
  29. 29.
    G.D. Dwivedi, Low temperature magnetic and transport properties of LSMO-PZT nanocomposites. RSC Adv. 5(39), 30748–30757 (2015)CrossRefGoogle Scholar
  30. 30.
    H.-H. Park, H.-H. Park, R.H. Hill, Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition. Appl. Surf. Sci. 237, 427–432 (2004)CrossRefGoogle Scholar
  31. 31.
    K. Franke, J. Besold, W. Haessler et al., Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf. Sci. 302(s1–2), L283–L288 (1994)CrossRefGoogle Scholar
  32. 32.
    Y.L. Tu, S.J. Milne, A study of the effects of process variables on the properties of PZT films produced by a single-layer sol-gel technique. J. Mater. Sci. 30(10), 2507–2516 (1995)CrossRefGoogle Scholar
  33. 33.
    K. Vojisavljević, G. Branković, T. Srećković et al., Preparation of ultrathin PZT films by a chemical solution deposition method from a polymeric citrate precursor. J. Eur. Ceram. Soc. 30, 485–488 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liu Yang
    • 1
  • De-Yi Zheng
    • 1
  • Kai-Xin Guo
    • 2
    • 3
  • Wan-Nan Zhao
    • 2
  • Ze-Hui Peng
    • 1
  • Gui-Gui Peng
    • 1
  • Tao Zhou
    • 1
  1. 1.College of Materials and MetallurgyGui Zhou UniversityGuiyangChina
  2. 2.China Zhenhua (Group) Xinyun Electronic Comp. & Dev. Co. Ltd.GuiyangChina
  3. 3.Key Laboratory of Electronic Composites of Guizhou ProvinceCollege of Big Data and Information Engineering, Guizhou UniversityGuiyangChina

Personalised recommendations