Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18493–18501 | Cite as

Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite

  • T. A. Taha
  • S. Elrabaie
  • M. T. Attia
Article

Abstract

Nanocrystalline ferrite samples having matrix Ni1−xZnxFe2O4 (x = 0.0, 0.1, 0.3, 0.5 and 0.7) synthesized by low- temperature self-combustion route using a complexing agent commercial bovine gelatin without any heat treatment. The morphological, magnetic, structural, and dielectrical properties of NiZnFe2O4/C nanocomposite have been analyzed. Those XRD analyses of the prepared ferrite samples illustrated pure single cubic spinel structure. The XRD parameters, viz average crystal size, lattice parameter, and density were deduced from XRD data. FTIR spectra revealed two conspicuous absorption bands, the higher band at tetrahedral (A) site and the lower band in octahedral (B) site. FE-SEM image for sample with x = 0.5 confirmed the appearance of carbon, also TEM image confirmed the nano-sized particles that agglomerated due to magneto-static interaction between particles and showed carbon dots with average size of 5 nm. The electron diffraction of selected area demonstrated the formation of single cubic spinel structure in consentient with XRD results. The nanocrystal of composition Ni0.9Zn0.1Fe2O4 has the maximum Ms = 101.09 emu/g as evinced in VSM measurements. The dielectric analysis showed that the dispersion of relative permittivity (ε′) is most extreme for the Ni0.5Zn0.5Fe2O4 sample.

References

  1. 1.
    C.B. Carter, M.G. Norton, Ceramic Materials: Science and Engineering (Springer, New York, 2007)Google Scholar
  2. 2.
    M.M. Rashad, D.A. Rayan, M. EL-Gendy, M.M. El Kholy, T.A. Taha, Structural and magnetic characteristics of ferroxplana Co2Y nanoferrites synthesized via two chemical routes. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4674-z CrossRefGoogle Scholar
  3. 3.
    X. He, G. Song, J. Zhu, Non-stoichiometric NiZn ferrite by sol-gel processing. Mater. Lett. 59(14), 1941–1944 (2005)CrossRefGoogle Scholar
  4. 4.
    M.A. Khan, M.J. ur Rehman, K. Mahmood, I. Ali, M.N. Akhtar, G. Murtaza, et al., Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram. Int. 41(2), 2286–2293 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J. Magn. Magn. Mater. 298(2), 83–94 (2006)CrossRefGoogle Scholar
  6. 6.
    R. Iyer, R. Desai, R.V. Upadhyay, Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites and their characterizations. Bull. Mater. Sci. 32(2), 141–147 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Sharma, K. Verma, U. Chaubey, V. Singh, B.R. Mehta, Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. Mater. Sci. Eng. B 167(3), 187–192 (2010)CrossRefGoogle Scholar
  8. 8.
    G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311(1), 46–50 (2007)CrossRefGoogle Scholar
  9. 9.
    V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, An investigation of particle size effects in ultrafine barium ferrite. J. Magn. Magn. Mater. 125(1–2), 199–208 (1993)CrossRefGoogle Scholar
  10. 10.
    V.K. Sankaranarayanan, N.S. Gajbhiye, Low-temperature preparation of ultrafine rare-earth iron garnets. J. Am. Ceram. Soc. 73(5), 1301–3007 (1990)CrossRefGoogle Scholar
  11. 11.
    A.E. Virden, K. O’Grady, Structure and magnetic properties of NiZn ferrite nanoparticles. J. Magn. Magn. Mater. 290, 868–870 (2005)CrossRefGoogle Scholar
  12. 12.
    K.H. Kim, Y.A. Kim, M. Yamaguchi, Radio frequency characteristics of Fe-filled carbon nanotube film. J. Magn. Magn. Mater. 302(1), 232–236 (2006)CrossRefGoogle Scholar
  13. 13.
    G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322(8), 1015–1019 (2010)CrossRefGoogle Scholar
  14. 14.
    M.M. Rashad, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba, A.E. Saba, Structure and magnetic properties of NixZn1–xFe2O4 nanoparticles prepared through co-precipitation method. J. Alloys Compd. 486(1), 759–767 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, C.S. Babu, K.S. Ramakrishna, et al., Structural and magnetic characterization of co-precipitated NixZn1–xFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 407, 135–141 (2016)CrossRefGoogle Scholar
  16. 16.
    P.P. Sarangi, S.R. Vadera, M.K. Patra, N.N. Ghosh, Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203(2), 348–353 (2010)CrossRefGoogle Scholar
  17. 17.
    N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322(14), 1999–2005 (2010)CrossRefGoogle Scholar
  18. 18.
    P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009)CrossRefGoogle Scholar
  19. 19.
    R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloys Compd. 491(1), 372–377 (2010)CrossRefGoogle Scholar
  20. 20.
    P.P. Hankare, U.B. Sankpal, R.P. Patil, I.S. Mulla, R. Sasikala, A.K. Tripathi, K.M. Garadkar, Synthesis and characterization of nanocrystalline zinc substituted nickel ferrites. J. Alloys Compd. 496(1), 256–260 (2010)CrossRefGoogle Scholar
  21. 21.
    M.A. Gabal, W.A. Bayoumy, A. Saeed, Y.M. Al Angari, Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via egg-white route. J. Mol. Struct. 1097, 45–51 (2015)CrossRefGoogle Scholar
  22. 22.
    P. Priyadharsini, A. Pradeep, G. Chandrasekaran, Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. J. Magn. Magn. Mater. 321(12), 1898–1903 (2009)CrossRefGoogle Scholar
  23. 23.
    M.K. Anupama, B. Rudraswamy, N. Dhananjaya, Investigation on impedance response and dielectric relaxation of Ni-Zn ferrites prepared by self-combustion technique. J. Alloys Compd. 706, 554–561 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 43(2), 2486–2494 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1–xZnxFe2O4 ferrite. Physica B 405(2), 507–512 (2010)CrossRefGoogle Scholar
  26. 26.
    W. Yan, W. Jiang, Q. Zhang, Y. Li, H. Wang, Structure and magnetic properties of nickel–zinc ferrite microspheres synthesized by solvothermal method. Mater. Sci. Eng. B 171(1), 144–148 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Sajjia, M. Oubaha, T. Prescott, A.G. Olabi, Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J. Alloys Compd. 506(1), 400–406 (2010)CrossRefGoogle Scholar
  28. 28.
    W.S. Chiu, S. Radiman, R. Abd-Shukor, M.H. Abdullah, P.S. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459(1), 291–297 (2008)CrossRefGoogle Scholar
  29. 29.
    S.S. Khot, N.S. Shinde, B.P. Ladgaonkar, B.B. Kale, S.C. Watawe, Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv. Appl. Sci. Res. 2(4), 460–471 (2011)Google Scholar
  30. 30.
    M. Sinha, H. Dutta, S.K. Pradhan, X-ray characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg–Zn-ferrite at elevated temperatures. Physica E 33(2), 367–369 (2006)CrossRefGoogle Scholar
  31. 31.
    Z. Wang, Y. Xie, P. Wang, Y. Ma, S. Jin, X. Liu, Microwave anneal effect on magnetic properties of Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method. J. Magn. Magn. Mater. 323(23), 3121–3125 (2011)CrossRefGoogle Scholar
  32. 32.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Characterization and growth of lead telluride quantum dots doped novel fluorogermanate glass matrix. Mater. Sci. Semicond. Process. 30, 631–635 (2015)CrossRefGoogle Scholar
  33. 33.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Novel PbSe nanocrystals doped fluorogermanate glass matrix. Mater. Sci. Semicond. Process. 34, 88–92 (2015)CrossRefGoogle Scholar
  34. 34.
    T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124(4), 307 (2018)CrossRefGoogle Scholar
  35. 35.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Synthesis and characterization of CdS nanocrystals embedded in germanate glasses. Appl. Nanosci. 4(2), 219–226 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (W.H. Freeman, San Francisco, 1963)Google Scholar
  37. 37.
    C.N.J. Wagner, Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering). J. Non-Cryst. Solids 31(1–2), 1–40 (1978)CrossRefGoogle Scholar
  38. 38.
    K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, et al., Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)CrossRefGoogle Scholar
  39. 39.
    M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Structural and electrical studies on La3+ substituted Ni–Zn ferrites. Mater. Chem. Phys. 92(2), 310–321 (2005)CrossRefGoogle Scholar
  40. 40.
    A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloys Compd. 502(1), 231–237 (2010)CrossRefGoogle Scholar
  41. 41.
    L.K. Leung, B.J. Evans, A.H. Morrish, Low-temperature Mössbauer study of a nickel-zinc ferrite: ZnxNi1–xFe2O4. Phys. Rev. B 8(1), 29 (1973)CrossRefGoogle Scholar
  42. 42.
    A.D. Sheikh, V.L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43(6), 2018–2025 (2008)CrossRefGoogle Scholar
  43. 43.
    M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324(14), 2258–2264 (2012)CrossRefGoogle Scholar
  44. 44.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)CrossRefGoogle Scholar
  45. 45.
    K.B. Modi, M.K. Rangolia, M.C. Chhantbar, H.H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)CrossRefGoogle Scholar
  46. 46.
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 1089, 25–31 (2015)CrossRefGoogle Scholar
  48. 48.
    T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36(1), 275–281 (2010)CrossRefGoogle Scholar
  49. 49.
    E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, et al., Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)CrossRefGoogle Scholar
  50. 50.
    T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol–gel combustion method. Ceram. Int. 39, S239–S243 (2013)CrossRefGoogle Scholar
  51. 51.
    I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322(7), 767–776 (2010)CrossRefGoogle Scholar
  52. 52.
    M.A. Gabal, Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white. J. Magn. Magn. Mater. 321(19), 3144–3148 (2009)CrossRefGoogle Scholar
  53. 53.
    M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486(1), 325–329 (2009)CrossRefGoogle Scholar
  54. 54.
    I. Ghafoor, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi0.9FeO3 multiferroics. J. Sol-Gel. Sci. Technol. 74(2), 352–356 (2015)CrossRefGoogle Scholar
  55. 55.
    T.A. Taha, A.A. Azab, AC conductivity and dielectric properties of borotellurite glass. J. Electron. Mater. 45(10), 5170–5177 (2016)CrossRefGoogle Scholar
  56. 56.
    S.A. Rahman, Temperature, frequency and composition dependence of dielectric properties of Nb substituted Li-ferrites. Egypt. J. Solids 29(1), 131–140 (2006)Google Scholar
  57. 57.
    C.S. Lakshmi, C.S. Sridhar, G. Govindraj, S. Bangarraju, D.M. Potukuchi, Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites. Physica B 459, 97–104 (2015)CrossRefGoogle Scholar
  58. 58.
    K.M. Batoo, M.S. Ansari, Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7(1), 112 (2012)‏CrossRefGoogle Scholar
  59. 59.
    Dar M.A., Verma V., Gairola S.P., Siddiqui W.A., Singh R.K., Kotnala R.K. Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258(14), 5342–5347 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations