Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18486–18492 | Cite as

Low permittivity MgO–xB2O3yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology

  • Huanfu Zhou
  • Xianghu Tan
  • Xiaobin Liu
  • Kangguo Wang
  • Shixuan Li
  • Xiuli Chen
Article
  • 68 Downloads

Abstract

MgO–xB2O3yBaCu(B2O5) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics (x = 1/4, 1/3 and 1/2) contain MgO and Mg3B2O6. But the B2O3-rich ceramics (x = 1, 2 and 3) contain B2O3, MgB2O4 and Mg2B2O5. The MgO–xB2O3 (x = 1/4, 1/3, 1/2, 1, 2 and 3) ceramics show high Q × f of 41,754–105,852 GHz, low εr of 4.24 ~ 7.68 and negative τf values of − 56 to − 30 ppm °C−1 with tuning the x values. The BaCu(B2O5) (BCB) was used to reduce the sintering temperature of MgO–2B2O3 ceramic. The MgO–2B2O3-4 wt% BCB ceramic sintered at 925 °C exhibits good microwave dielectric properties with high Q × f of 30,589 GHz, low εr of 4.8 and negative τf value of − 40 ppm °C−1. Importantly, MgO–2B2O3-4 wt% BCB ceramic has a good chemical compatibility with Ag, which illustrates that it is a candidate material for low temperature co-fired ceramic devices.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 61761015, 11464009 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011 and 2017GXNSFDA198027), Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQDJJ2017133) and Guangxi Key Laboratory Fund of Embedded Technology and Intelligent System.

References

  1. 1.
    L. Ma, Z.F. Fu, P. Liu, X.D. Tang, Microwave dielectric properties of low-fired Li2ZrO3–ZnO composite ceramics. J. Mater. Sci. Mater. Electron. 27, 232–236 (2016)CrossRefGoogle Scholar
  2. 2.
    D. Zhou, W.B. Li, H.H. Xi et al., Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system. J. Mater. Chem. C 3, 2582–2588 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Ullah, W. Lei, X.Q. Song et al., Phase microstructure evolution and microwave dielectric characteristic of (1 − x)(Sr0.5Ce0.5)TiO3-xNdAlO3 solid solution. J. Eur. Ceram. Soc. 37, 3051–3057 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.W. Chen, E.Z. Li, S.X. Duan et al., Low temperature sintering kinetics and microwave dielectric properties of BaTi5O11 ceramic. ACS Sustain. Chem. Eng. 5, 10606–10613 (2017)CrossRefGoogle Scholar
  5. 5.
    X.Y. Du, H. Su, H.W. Zhang et al., Effects of Li-ion substitution on the microwave dielectric properties of low-temperature sintered ceramics with nominal composition Li2xMg2–xSiO4. Ceram. Int. 44, 2300–2302 (2018)CrossRefGoogle Scholar
  6. 6.
    W. Lei, R. Ang, X.C. Wang et al., Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Wu, D. Zhou, J. Guo, L.X. Pang, Microwave dielectric properties and low temperature sintering of Li2Zn(Ti1–xSnx)3O8 (x ≤ 0.20) ceramics with B2O3–CuO addition. J. Mater. Sci. Mater. Electron. 24, 4942–4946 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Li, P. Liu, R. Pan et al., Microwave dielectric properties of (1 − x)SiO2-xTiO2 ceramics. Ceram. Int. 41, S582–S587 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Riazikhoei, F. Azough, R. Freer, The influence of ZnNb2O6 on the microwave dielectric properties of ZrTi2O6 ceramics. J. Am. Ceram. Soc. 89, 216–223 (2006)CrossRefGoogle Scholar
  10. 10.
    L. Cheng, P. Liu, S.X. Qu et al., Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloys Compd. 623, 238–242 (2015)CrossRefGoogle Scholar
  11. 11.
    S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q Li2ATi3O8 (A = Mg, Zn) ceramics. J. Eur. Ceram. Soc. 30, 2585–2592 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.C. Chen, M.Z. Weng, K.C. Chang, Microwave dielectric properties and microstructures of Ca(Nb1–xTax)2O6 ceramics. J. Mater. Sci. Mater. Electron. 25, 2475–2481 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Zhou, Y.H. Pang, D.W. Wang et al., High permittivity, low loss microwave dielectrics suitable for 5G resonator and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5, 10094–10098 (2017)CrossRefGoogle Scholar
  14. 14.
    H.F. Zhou, N. Wang, J.Z. Gong et al., Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. J. Alloys Compd. 688, 8–13 (2016)CrossRefGoogle Scholar
  15. 15.
    H.M. Davis, M.A. Knight, The system magnesium oxide-boric oxide. J. Am. Ceram. Soc. 28, 97–102 (1945)CrossRefGoogle Scholar
  16. 16.
    M. Nishizuka, H. Ogawa, A. Kan et al., Synthesis and microwave dielectric properties of MgO-xmol% B2O3 (x = 33 and 25) ceramics in MgO-B2O3 system. Ferroelectrics 388, 101–108 (2009)CrossRefGoogle Scholar
  17. 17.
    H.F. Zhou, X.H. Tan, K.G. Wang et al., Microstructure and sintering behavior of low temperature cofired Li4/5Mg4/5Ti7/5O4 ceramics containing BaCu(B2O5) and TiO2 and their compatibility with a silver electrode. RSC Adv. 7, 44706–44711 (2017)CrossRefGoogle Scholar
  18. 18.
    C.T. Prewitt, R.D. Shanno, Crystal structure of a high-pressure form of B2O3. Acta Cryst. 24, 869–874 (1968)CrossRefGoogle Scholar
  19. 19.
    S.H. Yoon, G.K.D.W. Choi, Kim et al., Mixture behavior and microwave dielectric properties of (1 − x)CaWO4-xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRefGoogle Scholar
  20. 20.
    X.K. Lan, Z.Y. Zou, W.Z. Lu et al., Phase transition and low-temperature sintering of Zn(Mn1–xAlx)2O4 ceramics for LTCC applications. Ceram. Int. 42, 17731–17735 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Kan, H. Ogawa, M. Sumino et al., Microwave dielectric properties of xMgO-(1 − x)B2O3 ceramics. Jpn. J. Appl. Phys. 48, 09KE03 (2009)CrossRefGoogle Scholar
  22. 22.
    H.F. Zhou, X.B. Liu, H. Wang et al., Phase stability, low temperature cofiring and microwave dielectric properties of BaTi5O11 ceramics with BaCu(B2O5) addition. J. Mater. Sci. Mater. Electron. 24, 299–304 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Embedded Technology and Intelligent System, School of Information Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations