Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18458–18464 | Cite as

Diblock conjugated polyelectrolyte electron transport layer modulating the morphology of the active layer for efficient nonfullerene organic solar cells

  • Dan Zhou
  • Yuancheng Qin
  • Rong Zhong
  • Haitao Xu
  • Yongfen Tong
  • Bin Hu
  • Yu Xie
Article
  • 134 Downloads

Abstract

To acquire high-performance nonfullerene organic solar cells (OSCs), the effective approach is to explore new interfacial layer that not only can modulate the interfacial contact, but can also tune the morphology of the active layer. A diblock CPE PFEO-b-PTNBr with polyfluorene and polythiophene backbone, quaternary ammonium salt and ethylene oxy polar side chains, has been used to modify ZnO as ETL for PBDB-T:ITIC OSCs. The influences of the diblock CPE PFEO-b-PTNBr electron transport layer (ETL) on the morphology and crystalline properties of the PBDB-T:ITIC, exciton diffusion and transfer, and the device performances have been thoroughly investigated. Remarkably, the self-assembled diblock polymer PFEO-b-PTNBr can really induce the corresponding PBDB-T:ITIC active layer to obtain an ordered nano-fiber morphology. Consequently, in sharp comparison to the OSC utilizing ZnO as ETL, the performances of the device with the ZnO/PFEO-b-PTNBr ETL have been simultaneously enhanced, exhibiting a remarkably superior power conversion efficiency of 10.8%. These findings manifest that the diblock CPE PFEO-b-PTNBr is a promising ETL in nonfullerene OSCs.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51703091, 51663018, 21404054 and 21501088), the Doctoral Scientific Research Foundation of Nanchang Hangkong University (Grant No. EA201702484), the Natural Science Foundation from Jiangxi Education Department (Grant Nos. GJJ170614, GJJ170589, DA201802151, DA201801176 and DA201702347) and the Natural Science Foundation of Jiangxi province (Grant Nos. 20181BAB216012, 20181BCB18003, 20171ACB20016 and 20172BCB22014).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

10854_2018_9961_MOESM1_ESM.doc (596 kb)
Supplementary material 1 (DOC 596 KB)

References

  1. 1.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  2. 2.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors. Nat. Photonics 7, 825 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Gao, Z.G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, Y. Li, All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016)CrossRefGoogle Scholar
  4. 4.
    G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ. Sci. 6, 3000–3006 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Zhou, S. Xiong, L. Chen, X. Cheng, H. Xu, Y. Zhou, F. Liu, Y. Chen, A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chem. Commun. 54, 563–566 (2018)CrossRefGoogle Scholar
  6. 6.
    Z. Li, W. Zhang, X. Xu, Z. Genene, D.D.C. Rasi, W. Mammo, A. Yartsev, M.R. Andersson, R.A.J. Janssen, E. Wang, High-performance and stable all-polymer solar cells using donor and acceptor polymers with complementary absorption. Adv. Energy Mater. 7, 1602722 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, B. Zhang, X. Ouyang, L. Chen, H. Wu, Polymer solar cells employing water-soluble polypyrrole nanoparticles as dopants of PEDOT:PSS with enhanced efficiency and stability. J. Phys. Chem. C 121, 18378–18384 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Zhao, C. Dou, Z. Xie, J. Liu, L. Wang, Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew. Chem. Int. Ed. 55, 5313–5317 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Zhou, H. Xu, Y. Qin, X. Zhong, M. Li, B. Hu, Y. Tong, Y. Xie, Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. J. Mater. Sci. 53, 7715–7724 (2018)CrossRefGoogle Scholar
  10. 10.
    C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen, S.R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 29, 1700144 (2017)CrossRefGoogle Scholar
  12. 12.
    J.E. Anthony, Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23, 583–590 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Kan, H. Feng, X. Wan, F. Liu, X. Ke, Y. Wang, Y. Wang, H. Zhang, C. Li, J. Hou, Y. Chen, Small-molecule acceptor based on the heptacyclic benzodi (cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 139, 4929–4934 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, H.Y. Woo, J. Hou, Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10, 546–551 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C.Z. Li, T.P. Russell, H. Chen, An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30, 1705208 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Qin, Y. Chen, Y. Cui, S. Zhang, H. Yao, J. Huang, W. Li, Z. Zheng, J. Hou, Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cell. J. Am. Chem. Soc. 139, 7148–7151 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Kan, J. Zhang, F. Liu, X. Wan, C. Li, X. Ke, Y. Wang, H. Feng, Y. Zhang, G.R.H. Long, R.H. FriendFriend, A.A. Bakulin, R.H. Friend, Y. Chen, Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells. Adv. Mater. 30, 1704904 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Li, S. Dai, Z. Ke, L. Yang, J. Wang, C. Yan, W. Ma, X. Zhan, Fused tris (thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells. Adv. Mater. 30, 1705969 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, J. Yu, X. Yin, Z. Hu, Y. Jiang, J. Sun, J. Zhou, F. Zhang, T.P. Russell, F. Liu, W. Tang, Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv. Funct. Mater. 28, 1705095 (2018)CrossRefGoogle Scholar
  22. 22.
    C.B. Nielsen, S. Holliday, H.Y. Chen, S.J. Cryer, I. McCulloch, Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Bin, L. Gao, Z.G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Y. Li, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Zhu, Z. Ke, Q. Zhang, J. Wang, S. Dai, Y. Wu, Y. Lin, W. Ma, W. You, X. Zhan, Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: effect of extended conjugation. Adv. Mater. 30, 1704713 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 30, 1705485 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Kang, S.-H. Oh, D.-Y. Kim, Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS Appl. Mater. Interfaces 6, 6227–6236 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Xie, L. Chen, Y. Chen, Electrostatic self-assembled metal oxide/conjugated polyelectrolytes as electron-transporting layers for inverted solar cells with high efficiency. J. Phys. Chem. C 117, 24804–24814 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Kesters, S. Govaerts, G. Pirotte, J. Drijkoningen, M. Chevrier, N. Van den Brande, X.J. Liu, M. Fahlman, B. Van Mele, L. Lutsen, D. Vanderzande, J. Manca, S. Clément, E. Von Hauff, W. Maes, High-permittivity conjugated polyelectrolyte interlayers for high-performance bulk heterojunction organic solar cells. ACS Appl. Mater. Interfaces 8, 6309–6314 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.M. Chang, C.Y. Leu, Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. J. Mater. Chem. A 1, 6446–6451 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Subbiah, V.D. Mitchell, N.K.C. Hui, D.J. Jones, W.W.H. Wong, A green route to conjugated polyelectrolyte interlayers for high-performance solar cells. Angew. Chem. 129, 8551–8554 (2017)CrossRefGoogle Scholar
  31. 31.
    U.K. Aryal, N. Chakravarthi, H.Y. Park, H. Bae, S.H. Jin, Y.S. Gal, Highly efficient polyacetylene-based polyelectrolytes as cathode interfacial layers for organic solar cell applications. Org. Electron. 53, 265–272 (2018)CrossRefGoogle Scholar
  32. 32.
    W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chem. Commun. 53, 2005–2008 (2017)CrossRefGoogle Scholar
  33. 33.
    W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, Highly efficient polymer solar cells with PTB7-based narrow band-gap conjugated polyelectrolytes as cathode interlayers: device performance dependence on the ionic pendants. Org. Electron. 47, 94–101 (2017)CrossRefGoogle Scholar
  34. 34.
    G. Xu, L. Gao, H. Xu, L. Huang, Y. Xie, X. Cheng, Y. Li, L. Chen, Y. Chen, n-type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. J. Mater. Chem. A 5, 13807–13816 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Gutacker, S. Adamczyk, A. Helfer, L.E. Garner, R.C. Evans, S.M. Fonseca, M. Knaapila, G.C. Bazan, H.D. Burrows, U. Scherf, All-conjugated polyelectrolyte block copolymers. J. Mater. Chem. 20, 1423–1430 (2010)CrossRefGoogle Scholar
  36. 36.
    M. He, F. Qiu, Z. Lin, Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. J. Mater. Chem. 21, 17039–17048 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, K. Tajima, K. Hirota, K. Hashimoto, Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J. Am. Chem. Soc. 130, 7812–7813 (2008)CrossRefGoogle Scholar
  38. 38.
    D. Zhou, X. Cheng, H. Xu, H. Yang, H. Liu, F. Wu, L. Chen, Y. Chen, Interface-induced face-on orientation of the active layer by self-assembled diblock conjugated polyelectrolytes for efficient organic photovoltaic cells. J. Mater. Chem. A 4, 18478–18489 (2016)CrossRefGoogle Scholar
  39. 39.
    Q. Liang, J. Han, C. Song, X. Yu, D.M. Smilgies, K. Zhao, J. Liu, Y. Han, Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6, 15610–15620 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources RecycleNanchang Hangkong UniversityNanchangChina
  2. 2.College of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina

Personalised recommendations