Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18397–18403 | Cite as

Influence of stacking order and intermediate phase at low temperature on Cu2ZnSnS4 thin film formation for solar cell

  • Kwang-Soo Lim
  • Seong-Man Yu
  • Ki-Bong Nam
  • Qicheng Hu
  • Tae-Sik Oh
  • Ji-Beom Yoo
Article
  • 70 Downloads

Abstract

A stacking order of a precursor is one of the important factors that affects the quality of Cu2ZnSnS4 (CZTS) thin film. Understanding of the intermediate phase formation and its reaction mechanism can contribute to the design of a precursor to enhance the performance of CZTS solar cell. In this work, three precursors such as Zn/SnS/Cu, SnS/Cu/Zn, and SnS/Zn/Cu were designed based on previous studies. These precursors were treated for sulfurization process at 560 °C, and annealed at 300 °C for 30 min to investigate the reaction of intermediate phases. The annealed thin film from Zn/SnS/Cu precursor exhibited crystallized and uniform intermediate ternary phase of Cu2SnS3. This easy and uniform transformation to Cu2SnS3 phase as a whole at low temperature using Zn/SnS/Cu precursor resulted in relatively smooth surface of CZTS thin film after sulfurization at high temperature. In contrast, CZTS thin film from SnS/Cu/Zn or SnS/Zn/Cu precursor showed a rough surface morphology with loss of Zn content. A rough surface will degrade the contact between CZTS absorber and CdS buffer layers, resulting in decreased a device performance. Accordingly, CZTS solar cell device fabricated from Zn/SnS/Cu precursor achieved improved efficiency of 4.20%.

Notes

Acknowledgements

This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201800).

Supplementary material

10854_2018_9954_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1564 KB)

References

  1. 1.
    T.K. Todorov, J. Tang, S. Bag et al., Adv. Energy Mater. 3, 34 (2013)CrossRefGoogle Scholar
  2. 2.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Ahn, S. Jung, J. Gwak et al., Appl. Phys. Lett. 97, 021905 (2010)CrossRefGoogle Scholar
  4. 4.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)CrossRefGoogle Scholar
  5. 5.
    W. Wang, M.T. Winkler, O. Gunawan et al., Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Oueslati, G. Brammertz, M. Buffiere et al., Thin Solid Films 582, 224 (2015)CrossRefGoogle Scholar
  7. 7.
    G.K. Dalapati, S. Zhuk, S. Masudy-Panah et al., Sci. Rep. 7, 1350 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.-P. Lin, T.-E. Hsieh, Y.-C. Chen, K.-P. Huang, Sol. Energy Mater. Sol. Cells 162, 55 (2017)CrossRefGoogle Scholar
  9. 9.
    T. Sánchez, X. Mathew, N. Mathews, J. Cryst. Growth 445, 15 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Jin, C. Yuan, G. Jiang, W. Liu, C. Zhu, Mater. Lett. 175, 180 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Tang, J. Liu, J. Ji, M. Dou, Z. Li, F. Wang, Appl. Surf. Sci. 383, 253 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Khalil, O. Atici, A. Lucotti, S. Binetti, A. Le Donne, L. Magagnin, Appl. Surf. Sci. 379, 91 (2016)CrossRefGoogle Scholar
  14. 14.
    W. Dang, X. Ren, W. Zi, L. Jia, S.F. Liu, J. Alloys Compd. 650, 1 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Kermadi, S. Sali, F.A. Ameur et al., Mater. Chem. Phys. 169, 96 (2016)CrossRefGoogle Scholar
  16. 16.
    D.B. Khadka, S. Kim, J. Kim, RSC Adv. 6, 37621 (2016)CrossRefGoogle Scholar
  17. 17.
    T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, RSC Adv. 5, 77565 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Liu, M. Tan, X. Zhang, J. Chen, S. Song, W. Zhang, J. Alloys Compd. 655, 124 (2016)CrossRefGoogle Scholar
  19. 19.
    N.K. Youn, G.L. Agawane, D. Nam et al., Int. J. Energy Res. 40, 662 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Safdar, M. Islam, M.A. Akram, M. Mujahid, Y. Khalid, S.I. Shah, J. Mater. Eng. Perform. 25, 457 (2016)CrossRefGoogle Scholar
  21. 21.
    K.-J. Yang, D.-H. Son, S.-J. Sung et al., J. Mater. Chem. A 4, 10151 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Khalkar, K.-S. Lim, S.-M. Yu, D.-W. Shin, T.-S. Oh, J.-B. Yoo, Int. J. Photoenergy 2015, 1 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Lv, Q. Liu, C. Zhu, Z. Wang, Mater. Lett. 180, 68 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Du, W. Zhao, Y. Sun et al., J. Alloys Compd. 737, 184 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.-P. Lin, Y.-F. Chi, T.-E. Hsieh, Y.-C. Chen, K.-P. Huang, J. Alloys Compd. 654, 498 (2016)CrossRefGoogle Scholar
  26. 26.
    K.-J. Yang, J.-H. Sim, D.-H. Son et al., Nano Energy 35, 52 (2017)CrossRefGoogle Scholar
  27. 27.
    W.-C. Chen, C.-Y. Chen, V. Tunuguntla et al., Nano Energy 30, 762 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Fairbrother, L. Fourdrinier, X. Fontané et al., J. Phys. Chem. 118, 17291 (2014)Google Scholar
  29. 29.
    R. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Yoo, J. Kim, Thin Solid Films 518, 6567 (2010)CrossRefGoogle Scholar
  31. 31.
    S.M. Yu, K.-S. Lim, D.-W. Shin, T.-S. Oh, J.-B. Yoo, J. Mater. Sci.: Mater. Electron. 28, 5696 (2017)Google Scholar
  32. 32.
    K.-S. Lim, S.-M. Yu, A.R. Khalkar et al., J. Alloys Compd. 650, 641 (2015)CrossRefGoogle Scholar
  33. 33.
    J.J. Scragg, J.T. Watjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Björkman, J. Am. Chem. Soc. 134, 19330 (2012)CrossRefGoogle Scholar
  34. 34.
    X. Yin, C. Tang, L. Sun, Z. Shen, H. Gong Chem. Mater. 26, 2005 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Yoo, J. Kim, L. Zhang, Curr. Appl. Phys. 12, 1052 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Dimitrievska, A. Fairbrother, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, Acta Mater. 70, 272 (2014)CrossRefGoogle Scholar
  37. 37.
    O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel et al., Sol. Energy Mater. Sol. Cells 117, 246 (2013)CrossRefGoogle Scholar
  38. 38.
    P. Fernandes, P. Salomé, A. Da Cunha, J. Phys. D 43, 215403 (2010)CrossRefGoogle Scholar
  39. 39.
    H. Yoo, J. Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011)CrossRefGoogle Scholar
  40. 40.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Philos. Trans. R. Soc. A 371, 20110432 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kwang-Soo Lim
    • 1
  • Seong-Man Yu
    • 1
  • Ki-Bong Nam
    • 1
  • Qicheng Hu
    • 1
  • Tae-Sik Oh
    • 3
  • Ji-Beom Yoo
    • 1
    • 2
  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.School of Mechanical and ICT Convergence EngineeringSun Moon UniversityAsanRepublic of Korea

Personalised recommendations