Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18372–18379 | Cite as

Investigation of the physical properties of K2Co2(MoO4)3 for photocatalytic application

  • R. Nasri
  • T. Larbi
  • M. Amlouk
  • M. F. Zid
Article
  • 40 Downloads

Abstract

In this contribution, potassium cobalt(II) molybdate K2Co2(MoO4)3 was synthesized by a solid-state reaction process. The morphology, the microstructure and the optical properties of the prepared compound have been studied by means of scanning probe microscopy, X-ray diffraction (XRD), FTIR and Raman spectroscopy respectively. Also, this material was studied by photoluminescence and UV–Vis spectroscopy. XRD analysis revealed that K2Co2(MoO4)3 crystallizes in the monoclinic system with P21/c space group and lattice parameters: a = 7.038(8) Å, b = 8.987(9) Å, c = 20.573(3) Å, β = 112.19(3)°, V = 1204.9(7) Å3 and Z = 4. This structure can be described by the presence of tetramers linked with each other by MoO4 tetrahedra giving a three-dimensional crystal structure containing channels in which K+ ions reside. Obtained Raman and IR lines were assigned to different normal vibration modes. The photoluminescence spectrum shows several peaks associated mainly with interstitials defects and oxygen vacancies due to a photoinduced charge carrier recombination. It is found that the rate of MB degradation is about 80% for xenon and UV (8 W) lights and it is of about 60% over sunlight during 2 h. This work suggests a good photocatalytic activity of K2Co2(MoO4)3, which may be of interest to develop a safe, cost-effective solar water treatment process.

References

  1. 1.
    E. Enriquez, X. Xu, S. Bao, Z. Harrell, C. Chen, S. Choi, A. Jun, G. Kim, M.-H. Whangbo, ACS Appl. Mater. Interfaces 7, 24353 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Thilagavatchi, A. Manikandan, S.K. Jaganathan, S.A. Antony, J.H. Hussain, Adv. Sci. Eng. Med. 9(3), 229 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Hajebi, A. Abedini, J. Mater. Sci. Mater. Electron. 27, 4489 (2016)CrossRefGoogle Scholar
  4. 4.
    A.P. de Moura, L.H. de Oliveira, P.F.S. Pereira, I.L.V. Rosa, M.S. Li, E. Longo, J.A. Varela, Adv. Chem. Eng. Sci. 2, 465 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Liu, X. Huang, Y. Li, Z. Li, J. Mater. Chem. 17, 2754 (2007)CrossRefGoogle Scholar
  6. 6.
    D.T. Dam, T. Huang, J.-M. Lee, Sustain. Energy Fuels 1, 324 (2017)CrossRefGoogle Scholar
  7. 7.
    M.J. Barmi, M. Minakshi, ChemPlusChem 81, 1 (2016)CrossRefGoogle Scholar
  8. 8.
    J.A. Rodriguez, S. Chaturvedi, J.C. Honson, A. Albornoz, J.L. Brito, J. Phys. Chem. B 102(8), 1347 (1998)CrossRefGoogle Scholar
  9. 9.
    V. Umaphathy, P. Neeraja, J. Nanosci. Nanotechnol. 16, 2960 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Ehrenberg, G. Wltschek, F. Trouw, T. Kroener, H. Weitzel, H. Fuess, J. Magn. Magn. Mater. 135, 355 (1994)CrossRefGoogle Scholar
  11. 11.
    Y. Fan, W. Ma, J. He, Y. Du, RSC Adv. 7, 36193 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Zhao, Q. Wu, M. Wen, J. Mater. Sci. 44, 6356 (2009)CrossRefGoogle Scholar
  13. 13.
    N. Padmanathan, H. Shao, S. Selladurai, C. Glynn, C. O’Dwyer, K.M. Razeeb, Int. J. Hydrog. Energy 40, 16297 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Wang, X. Cui, L. Gong, Z. Lyu, Y. Zhou, W. Dong, J. Liu, M. Lai, F. Huo, W. Huang, M. Lin, W. Chen, Nanoscale 9, 3898 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Ao, Y. Gao, P. Wang, C. Wang, J. Hou, J. Qian, Mater. Res. Bull. 49, 223 (2014)CrossRefGoogle Scholar
  16. 16.
    M.S. Michael, K.M. Begam, M. Kloke, S.R.S. Parabaharan, J. Solid State Electrochem. 12, 1025 (2008)CrossRefGoogle Scholar
  17. 17.
    V. La Parola, G. Deganello, A.M. Venezia, Appl. Catal. A 260, 237 (2004)CrossRefGoogle Scholar
  18. 18.
    V. Umapathy, P. Neeraja, J. Nanosci. Nanotechnol. 16, 2960 (2016)CrossRefGoogle Scholar
  19. 19.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112 (2008)CrossRefGoogle Scholar
  20. 20.
    L.J. Farrugia, J. Appl. Crystallogr. 32, 837 (1999)CrossRefGoogle Scholar
  21. 21.
    A.C.T. Norh, D.C. Phillips, F.S. Mathews, Acta Crystallogr. A 24, 351 (1968)CrossRefGoogle Scholar
  22. 22.
    J.M. Engel, H. Ahsbahs, H. Fuess, H. Ehrenberg, Acta Crystallogr. B 65, 29 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Hanuza, J. Mol. Struct. 114, 471 (1984)CrossRefGoogle Scholar
  24. 24.
    V. Jeseentharani, A. Dayalan, K.S. Nagaraja, Solid State Sci. 67, 46 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Bensaid, A. El Bouari, S. Benmokhtar, B. Manoun, L. Bih, P. Lazor, J. Mol. Struct. 1031, 152 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Dridi, M.F. Zid, M. Maczka, Adv. Mater. Sci. Eng. (2017).  https://doi.org/10.1155/2017/6123628 CrossRefGoogle Scholar
  27. 27.
    A.P.A. Marques, F.V. Motta, M.A. Cruz, J.A. Varela, E. Longo, I.L.V. Rosa, Solid State Ion. 202, 54 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Hermanowicz, M. Maczka, M. Wolcyrz, P.E. Tomaszewski, M. Pasciak, J. Hanuza, J. Solid State Chem. 179, 685 (2006)CrossRefGoogle Scholar
  29. 29.
    M.T. Fabbro, C.C. Foggi, L.P.S. Santos, L. Gracia, A. Perrin, C. Perrin, C.E. Vergani, A.L. Machado, J. Andrés, E. Cordoncillo, E. Longo, Dalton Trans. 45, 10736 (2016)CrossRefGoogle Scholar
  30. 30.
    W. Dridi, M.F. Zid, M. Maczka, J. Alloys Compd. 731, 955 (2018)CrossRefGoogle Scholar
  31. 31.
    V. Jeseentharani, A. Dayalan, K.S. Nagaraja, J. Solid State Sci. 67, 46 (2017)CrossRefGoogle Scholar
  32. 32.
    H.Y. He, P. Chen, L.Y. Cao, J. Lu, Res. Chem. Intermed. 40, 1525 (2014)CrossRefGoogle Scholar
  33. 33.
    N.M. Rasdi, Y.W. Fen, R.S. Azis, N.A.S. Omar, Optik 149, 409 (2017)CrossRefGoogle Scholar
  34. 34.
    S.-J. Xia, X.J. Zha, P.P. Hu, Z.J. Chu, C.Z. Huang, L. Zhang, ACS Appl. Mater. Interfaces 8(12), 8184 (2016)CrossRefGoogle Scholar
  35. 35.
    M.B. Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Boukhachem, O. Kamoun, C. Mrabet, C. Mannai, N. Zouaghi, A. Yumak, K. Boubaker, M. Amlouk, Mater. Res. Bull. 72, 252 (2015)CrossRefGoogle Scholar
  37. 37.
    L. Qin, P. Cai, C. Chen, C. Han, J. Wang, S.I. Kim, H.J. Seo, J. Phys. Chem. C 120(24), 12989 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Yo-Seung, C. Nam-Ihn, L. Myung-Hyun, K. Bae-Yeon, L. Deuk Yong, J. Nanosci. Nanotechnol. 16, 1831 (2016)CrossRefGoogle Scholar
  39. 39.
    T. Larbi, M.A. Amara, B. Ouni, M. Amlouk, Mater. Res. Bull. 95, 152 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Tunis El Manar, Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Faculté des Sciences de Tunis, El Manar IITunisTunisia
  2. 2.Unité de physique des dispositifs a semi-conducteurs, Faculté des Sciences de Tunis, El Manar IITunisTunisia
  3. 3.Université de Gafsa, Faculté des SciencesGafsaTunisia

Personalised recommendations