Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18358–18371 | Cite as

Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties

  • Jindi Feng
  • Rui Xiong
  • Yong Liu
  • Fangyi Su
  • Xueke Zhang
Article
  • 29 Downloads

Abstract

CoxZn1−xFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4) nanopowders were fabricated via auto-combustion synthesis followed by calcined treatment. The structural, morphological, compositional and magnetic properties of the as-synthesized samples were decided by X-ray diffraction (XRD), field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, specific surface area and Physical Property Measurement System analyses, respectively. The XRD patterns revealed all annealed cobalt substituted zinc nanoferrites display a single phase cubic spinel structure, the decrease in lattice constant with increasing Co2+ ions concentration is related to the lattice shrinkage originated from the replacement of Zn2+ ions (ionic radii of 0.82 Å) by Co2+ ions (ionic radii of 0.78 Å); the increase of crystallite size with increasing Co2+ ions content can be attributed to the less exothermic for the formation of cobalt ferrite than that for zinc ferrite. The MH curves revealed that there are unsaturated magnetization and negligible hysteresis loops for all samples with lower cobalt concentration (x = 0, 0.1, 0.2, and 0.3), implying a superparamagnetic behavior; while the Co0.4Zn0.6Fe2O4 nanoparticles (x = 0.4) show ferromagnetism at room temperature. The M–T relations inferred the substitution of cobalt ions can remarkably enhance Curie temperature of the as-prepared Co–Zn ferrite nanoparticles. At room temperature lower cobalt-substituted zinc nanoferrites tend to show superparamagnetism while higher cobalt-substituted zinc nanoferrites prefer to present ferromagnetism.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51571152), Research Fund for the Key Scientific Program of Higher Education of He’nan Province of China (No. 17B430006), Research fund of He’nan Provincial Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201713503002), Research fund of Xinyang College Training Program of Innovation and Entrepreneurship for Undergraduates (No. CX20170003).

References

  1. 1.
    A.R. Shyam, R. Dwivedi, V.S. Reddy, K.V.R. Chary, R. Prasad, Vapour phase methylation of pyridine with methanol over the Zn1–xMnxFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1) ferrite system. Green Chem. 4, 558–561 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Köseoǧlu, H. Kavas, Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584–590 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Deka, P.A. Joy, Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc. 90, 1494–1499 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Khan, A. Maqsood, M.A. Rehman, M.A. Malik, M. Akram, Structural, dielectric, and magnetic characterization ofnanocrystalline Ni–Co ferrites. J. Supercond. Nov. Magn. 25, 2707–2711 (2012)CrossRefGoogle Scholar
  5. 5.
    T.L. Phan, N. Tran, D.H. Kim, N.T. Dang, D.H. Manh, T.N. Bach, C.L. Liu, B.W. Lee, Magnetic and magnetocaloric properties of Zn1–xCoxFe2O4 nanoparticles. J. Electron. Mater. 46, 4214–4226 (2017)CrossRefGoogle Scholar
  6. 6.
    C.N. Chinnasamy, B. Jeyadevan, O.P. Perez, K. Shinoda, K. Tohji, A. Kasuya, Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. IEEE Trans. Magn. 38, 2640–2642 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram. Int. 43, 3797–3803 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Atif, M. Nadeem, Sol-gel synthesis of nanocrystalline Zn1–xNixFe2O4 ceramics and its structural, magnetic and dielectric properties. J. Sol-Gel. Sci. Technol. 72, 615–626 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.P. Zhang, S.H. Lee, K.R. Reddy, A.I. Gopalan, K.P. Lee, Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)CrossRefGoogle Scholar
  11. 11.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Kim, M. Kim, Y.K. Kim, S.H. Hwang, S.K. Lim, Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Appl. Catal. B 148–149, 170–176 (2014)CrossRefGoogle Scholar
  13. 13.
    K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  14. 14.
    M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093–5101 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Lu, R. Zhang, C. Hu, F. Chen, S. Duo, Q. Hu, TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys. Chem. Chem. Phys. 15, 12963–12970 (2013)CrossRefGoogle Scholar
  16. 16.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A. Md Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. A 44, 3355–3364 (2006)CrossRefGoogle Scholar
  17. 17.
    K.R. Reddya, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloid Surf. A 320, 49–56 (2008)CrossRefGoogle Scholar
  18. 18.
    D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J. Alloys Compd. 587, 50–58 (2014)CrossRefGoogle Scholar
  19. 19.
    I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1 – xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012)CrossRefGoogle Scholar
  20. 20.
    K.H. Wu, Y.C. Chang, G.P. Wang, Preparation of NiZn ferrite/SiO2 nanocomposite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 269(2), 150–155 (2004)CrossRefGoogle Scholar
  21. 21.
    G. Vaidyanathan, S. Sendhilnathan, Characterization of Co1–xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Physica B 403, 2157–2167 (2008)CrossRefGoogle Scholar
  22. 22.
    I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Sreekumar et al., A comparison on the catalytic activity of Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0)-type ferrospinels prepared via. A low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent. J. Appl. Catal. A 230(1–2), 245 (2002)CrossRefGoogle Scholar
  24. 24.
    K. Sreekumar, T.M. Jyothi, T. Mathew et al., Selective N-methylation of aniline with dimethyl carbonate over Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0) type systems. J. Mol. Catal. A 159(2), 327 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Erri, P. Pranda, A. Varma, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. iron(III) nitrate–model fuels. Ind. Eng. Chem. Res. 43, 3092–3096 (2004)CrossRefGoogle Scholar
  27. 27.
    M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1–xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)CrossRefGoogle Scholar
  29. 29.
    L.N. Anh, T.T. Loan, N.P. Duong, D.T.T. Nguyet, T.D. Hien, Single phase formation, cation distribution, and magnetic characterization of coprecipitated nickel-zinc ferrites. Anal. Lett. 48, 1965–1978 (2015)CrossRefGoogle Scholar
  30. 30.
    R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Hashim, Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, R. Kumar, Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2–xCrxO4 (0 ≤ x ≤ 1) ferrite nanoparticles. Powder Technol. 229, 37–44 (2012)CrossRefGoogle Scholar
  32. 32.
    E. Smidt, K. Meissl, The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268 (2007)CrossRefGoogle Scholar
  33. 33.
    A.M. Wahba, M.B. Mohamed, Structural, magnetic and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram. Int. 40, 6127 (2014)CrossRefGoogle Scholar
  34. 34.
    M.R. Loghman-Estarki, S. Torkian, R.A. Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5–xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J. Magn. Magn. Mater. 442, 163–175 (2017)CrossRefGoogle Scholar
  35. 35.
    A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int. J. Appl. Ceram. Technol. 15, 758–765 (2018)CrossRefGoogle Scholar
  36. 36.
    L.D. Zhang, J.M. Mou, Nanostructured Materials (in Chinese) (Science Press, Beijing, 2001), pp. 148–152 (in Chinese)Google Scholar
  37. 37.
    M. Sertkol, Y. Köseoǧlu, A. Baykal, H. Kavasa, A.C. Başaran, Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157–162 (2009)CrossRefGoogle Scholar
  38. 38.
    K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335, 34–39 (2009)CrossRefGoogle Scholar
  39. 39.
    K.R. Reddy, K.P. Lee, J.Y. Kim, Y. Lee, Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties. J. Nanosci. Nanotechnol. 8, 5632–5639 (2008)CrossRefGoogle Scholar
  40. 40.
    Y. Köseoǧlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)CrossRefGoogle Scholar
  41. 41.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science and TechnologyXinyang CollegeXinyang CityPeople’s Republic of China
  2. 2.School of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of EducationWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations