Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18343–18351 | Cite as

Synthesis and characterization of polyaniline-modified BiOI: a visible-light-response photocatalyst

  • Changxin Yan
  • Zilong Zhang
  • Weijie Wang
  • Tianzhen Ju
  • Houde She
  • Qizhao Wang
Article
  • 61 Downloads

Abstract

BiOI was modified by polyaniline (PANI) via a facile co-precipitation method. The as-prepared composites were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, UV–Vis diffuse reflectance spectra, photocurrent–potential (I–V) curves, transient photocurrents, Electrochemical impedance, Mott–Schottky curves and room photoluminescence emission spectra. The effects of PANI/BiOI composites mass ratio on for rhodamine B (RhB) degradation efficiency under visible light irradiation were systematically investigated. Experimental results showed that the photocatalytic activity of PANI/BiOI (12.5 wt%) reached about 91% removal efficiency of RhB, which was about four times higher than pure BiOI. By capture experiment, the dominant radical during the photocatalysis degradation experiment were further ascertained.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21663027, 51262028, 21261021), the Science and Technology Support Project of Gansu Province (1504GKCA027), the Program for the Young Innovative Talents of Longyuan and the Program for Innovative Research Team (NWNULKQN-15-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    J. Lai, Y. Qin, L. Yu, C. Zhang, GSH-assisted hydrothermal synthesis of MnxCd1–xS solid solution hollow spheres and their application in photocatalytic degradation. Mater. Sci. Semicond. Process. 52, 82–90 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chem. Eng. J. 326, 411–418 (2017)CrossRefGoogle Scholar
  4. 4.
    Q. Wang, J. Lian, Q. Ma, S. Zhang, J. He, J. Zhong, J. Li, H. Huang, B. Su, Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catal. Today 281, 662–668 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Pandiyarajan, R. Saravanan, B. Karthikeyan, F. Gracia, H.D. Mansilla, M.A. Gracia-Pinilla, R.V. Mangalaraja, Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28, 2448–2457 (2016)Google Scholar
  6. 6.
    R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, V.K. Gupta, Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int. J. Biol. Macromol. 109, 1239–1245 (2018)CrossRefGoogle Scholar
  7. 7.
    Z. Jiang, Y. Liu, T. Jing, B. Huang, Z. Wang, X. Zhang, X. Qin, Y. Dai, Enhancing visible light photocatalytic activity of TiO2 using a colorless molecule (2-methoxyethanol) due to hydrogen bond effect. Appl. Catal. B 200, 230–236 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Romero-Saez, L.Y. Jaramillo, R. Saravanan, N. Benito, E. Pabon, E. Mosquera, F. Gracia, Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants. Express Polym. Lett. 11, 899–909 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Cheng, M. Wen, X. Ma, Y. Kuwahara, K. Mori, Y. Dai, B. Huang, H. Yamashita, Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. J. Am. Chem. Soc. 138, 9316–9324 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Zhang, Z. Wang, B. Huang, X. Zhang, X. Qin, H. Li, Y. Dai, Y. Li, Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem. Mater. 28, 6613–6620 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Qin, C. Yang, M. Cao, X. Zhang, S. Rajendran, S. Limpanart, M. Ma, R. Liu, Two-dimensional porous sheet-like carbon-doped ZnO/g-C3N4 nanocomposite with high visible-light photocatalytic performance. Mater. Lett. 189, 156–159 (2017)CrossRefGoogle Scholar
  12. 12.
    G. Huang, Y. Zhu, Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. CrystEngComm 14, 8076–8082 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Chong, B. Jin, Recent developments in photocatalytic water treatment technology: a review. Water Res. 10, 2997–3027 (2010)CrossRefGoogle Scholar
  14. 14.
    Z. Zhao,. W. Dai, Structural, electronic, and optical properties of Eu-doped BiOX (X = F, Cl, Br, I): a DFT + U study. Inorg. Chem. 53, 13001–13011 (2014)CrossRefGoogle Scholar
  15. 15.
    T. Li, G. Chen, C. Zhou, Z. Shen, R. Jin, J. Sun, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans. 40, 6751–6758 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Wang, F. Jia, Z. Zheng, L. Zhang, Crossed BiOI flake array solar cells. Electrochem. Commun. 12, 1764–1767 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Wang, G. Huang, J. Yu, P. Wong, Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. J. Environ. Sci. 34, 232–247 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, G. Zhu, J. Gao, M. Hojamberdiev, R. Zhu, X. Wei, Q. Guo, P. Liu, Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: photodegradation of phenol and bisphenol A. Appl. Catal. B 200, 72–82 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Qin, M. Zhang, S. Rajendran, X. Zhang, R. Liu, Facile synthesis of graphene-AgVO3 nanocomposite with excellent supercapacitor performance. Mater. Chem. Phys. 212, 30–34 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, G. Zhu, J. Gao, R. Zhu, M. Hojamberdiev, C. Wang, X. Wei, P. Liu, A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl. Catal. B 205, 421–432 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Wang, T. Niu, D. Jiao, Y. Bai, J. Zhong, J. Li, H. She, H. Huang, Preparation of visible-light-driven BiOBr composites with encapsulated heteropolyacids (H3PW12O40) by zeolite for the photo-degradation of methyl orange. New J. Chem. 41, 4322–4328 (2017)CrossRefGoogle Scholar
  22. 22.
    Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bai, Z. Lei, Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity. Appl. Catal. B 214, 158–167 (2017)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Y. Shi, L. Pu, Y. Tang, J. He, S. Zhang, J. Zhong, J. Li, B. Su, Fabrication of the carnation-like CCN-CuS p-n heterojunctions with enhanced photocatalytic performance under visible light irradiation. Appl. Surf. Sci. 367, 109–117 (2016)CrossRefGoogle Scholar
  24. 24.
    C. Tan, G. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. Luo, P. Liu, Y. Liu, Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light. Appl. Catal. B 25, 425–436 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, W. Wang, L. Zhou, M. Shang, S. Sun, Fe3O4 coupled BiOCl: a highly efficient magnetic photocatalyst. Appl. Catal. B 90, 458–462 (2009)CrossRefGoogle Scholar
  26. 26.
    Q. Wang, D. Jiao, J. Lian, Q. Ma, J. Yu, H. Huang, J. Zhong, J. Li, Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of rhodamine-B. J. Alloys Compd. 649, 474–482 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Li, J. Xue, X. Bai, Synthesis of ZnWO4/CdWO4 core-shell structured nanorods formed by an oriented attachment mechanism with enhanced photocatalytic performances. CrystEngComm 18, 309–315 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Wang, J. Hui, J. Li, Y. Cai, S. Yin, F. Wang, B. Su, Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl. Surf. Sci. 283, 577–583 (2013)CrossRefGoogle Scholar
  29. 29.
    D. Dhawale, R. Salunkhe, V. Jamadade, D. Dubal, S. Pawar, C. Lokhande, Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Curr. Appl. Phys. 10, 904–909 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta. 247, 486–495 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Hou, R. Cao, S. Jiao, H. Zhu, R.V. Kumar, PANI/Bi12TiO20 complex architectures: controllable synthesis and enhanced visible-light photocatalytic activities. Appl. Catal. B 104, 399–406 (2011)CrossRefGoogle Scholar
  34. 34.
    C. Baiocchi, M. Brussino, E. Pramouro, A. Prevot, L. Palmisano, G. Marci, Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–vis diode array and atmospheric pressure ionization quadrupole iontrap mass spectrometry. Int. J. Mass Spectrom. 214, 247–256 (2002)CrossRefGoogle Scholar
  35. 35.
    G. Senadeera, T. Kitamura, Y. Wada, S. Yanagida, Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells. J. Photochem. Photobiol. B 164, 61–66 (2004)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, B. Li, J. Wang, Y. Yuan, Q. Zhang, Z. Gao, L. Liu, L. Chen, The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16, 25854–25861 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Geography and Environment ScienceNorthwest Normal UniversityLanzhouChina
  2. 2.College of Chemistry and Chemical EngineeringNorthwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of ChinaLanzhouChina

Personalised recommendations