Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18282–18289 | Cite as

The structural and electronic properties of TiO2 polymorphs towards water splitting reaction

  • Leonardo H. Morais
  • Eder A. Pereira
  • Maykon A. Montanhera
  • Cinthia S. C. Batista
  • Ailton J. Terezo
  • Gabriel L. C. de Souza
  • Edna R. Spada
  • Fernando R. de Paula
  • Renato G. Freitas
Article
  • 60 Downloads

Abstract

Experimental and theoretical techniques are commonly utilized to characterization of materials. In this work, TiO2 nanoparticles (TiO2NP) from anatase and rutile were analyzed by X-ray diffraction (XRD), that was used to follow the structural evolution of the amorphous precipitate, and microstructure analysis was realized with Rietveld refinement. By Rietveld refinements, the crystallographic image file are generated for each sample to be able to perform simulations of the material structure. In addition, density functional theory was used to analyze electronic structures, several adsorptions of the H2O molecule onto TiO2 were performed, using –H was displaced in steps 0.01 Å and calculation/optimization energies were obtained up to cleavage H–O–H and O–H formation, taking into account photocatalytic mode of electron density distribution isosurfaces.

Notes

Acknowledgements

The authors thank the Brazilian agencies: CNPq (454704/2014-3, 152036/2016-4, 427161/2016-9), FAPESP (2011/11065-0), the National Institute for Science and Technology on Organic Electronics (CNPq 573762/2008-2 and FAPESP 2008/57706-4) and FAPEMAT (214599/2015, Pronem/569157-2014) for financial support. The authors are also grateful to CENAPAD/SP (Proj650) for providing the computational time.

Supplementary material

10854_2018_9942_MOESM1_ESM.docx (1007 kb)
Supplementary material 1 (DOCX 1007 KB)

References

  1. 1.
    N.S. Lewis, Science 315(5813), 798–801 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Chu, A. Majumdar, Nature 488(7411), 294 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Ni et al., Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)CrossRefGoogle Scholar
  4. 4.
    U. Diebold, Surf. Sci. Rep. 48(5–8), 53–229 (2003)CrossRefGoogle Scholar
  5. 5.
    U. Stafford, K.A. Gray, P.V. Kamat, A. Varma, Chem. Phys. Lett. 205(1), 55 (1993)CrossRefGoogle Scholar
  6. 6.
    G. Riegel, J.R. Bolton, J. Phys. Chem. 99(12), 4215 (1995)CrossRefGoogle Scholar
  7. 7.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Nanotechnology 19(14), 145605 (2008)CrossRefGoogle Scholar
  8. 8.
    J.F. Banfield et al., J. Mater. Chem. 8(9), 2073 (1998)CrossRefGoogle Scholar
  9. 9.
    K.E. Karakitsou, X.E. Verykios, J. Phys. Chem. 97(6), 1184 (1993)CrossRefGoogle Scholar
  10. 10.
    H. Cheng et al., RSC Adv. 4(87), 47031–47038 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang, Z. Jia, J. Mater. Sci.: Mater. Electron. 28, 17871 (2017)Google Scholar
  12. 12.
    M. Ali, I.-N. Lin, C.-J. Yeh, Nano 13, 1850073 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Feng, G. Wu, Y. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Shi, J. Zhu, X. Shen, F. Chen, F. Ning, H. Zhang, Y.-Z. Long, X. Ning, J. Zhao, RSC Adv. 8, 4072 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, ACS Appl. Mater. Interfaces 9, 5660 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, RSC Adv. 6, 58069 (2016)CrossRefGoogle Scholar
  17. 17.
    H.M. Rietveld, Acta Crystallogr. A228, 35 (1966)Google Scholar
  18. 18.
    H.M. Rietveld, Acta Crystallogr. 22(1), 151 (1967)CrossRefGoogle Scholar
  19. 19.
    R.N. Hall, Phys. Rev. 87(2):387,1952CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, J.T. Yates Jr., J. Phys. Chem. C 114(7), 3098 (2010)CrossRefGoogle Scholar
  21. 21.
    J.M. Poblet, X. Lopez, C. Bo, Chem. Soc. Rev. 32(5), 297 (2003)CrossRefGoogle Scholar
  22. 22.
    E.R. Spada, E.A. Pereira, M.A. Montanheira, L.H. Morais, R.G. Freitas, R.G.F. Costa, G.B. Soares, C. Ribeiro, F.H. Paula, J. Mater. Sci.: Mater. Electron. 28, 16932 (2017)Google Scholar
  23. 23.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  24. 24.
    A.C. Larson, R.B. von Dreele, Lab. Rep. LAUR 86, 1 (2004)Google Scholar
  25. 25.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  26. 26.
    P. Thompson, D.E. Cox, J.B. Hasting, J. Appl. Crystallogr. 20, 79 (1987)CrossRefGoogle Scholar
  27. 27.
    P.W. Stephens, J. Appl. Crystallogr. 32, 281 (1999)CrossRefGoogle Scholar
  28. 28.
    M. Kilic, Z. Cinar, J. Adv. Oxide Technol. 12, 37–46 (2009)Google Scholar
  29. 29.
    M. Luisa Marin, L. Santos-Juanes, A. Arques, A.M. Amat, M.A. Miranda, Chem. Rev. 112, 1710 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Chen, C.E. Nanayakkara, V.K. Grassian, Chem. Rev. 112, 5919 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864–B871 (1964)CrossRefGoogle Scholar
  33. 33.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  34. 34.
    M.J. Frisch et al., Gaussian 09, revision D. 01 (Gaussian, Inc., Wallingford, 2009)Google Scholar
  35. 35.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  36. 36.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  37. 37.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200–1211 (1980)CrossRefGoogle Scholar
  38. 38.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J.Phys.Chem. 98, 11623–11627 (1994)CrossRefGoogle Scholar
  39. 39.
    P. Jeffrey Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)CrossRefGoogle Scholar
  40. 40.
    P. Jeffrey Hay, W.R. Wadt, J. Chem. Phys. 82, 284 (1985)CrossRefGoogle Scholar
  41. 41.
    P. Jeffrey Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)CrossRefGoogle Scholar
  42. 42.
    J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn. (Gaussian Inc., Pittsburgh, 1996)Google Scholar
  43. 43.
    Y. Shao, D. Tang, J. Sun, Y. Lee, W. Xiong, China Particuol. 2, 119 (2004)CrossRefGoogle Scholar
  44. 44.
    Q. Gao, X. Wu, Y. Fan, Dyes Pigm. 95, 96 (2012)CrossRefGoogle Scholar
  45. 45.
    P. Bose, S.K. Pradhan, S. Sen, Mater. Chem. Phys. 80, 73 (2003)CrossRefGoogle Scholar
  46. 46.
    H. Dutta, P. Sabu, S.K. Pradhan, M. De, Mater. Chem. Phys. 77, 153 (2002)CrossRefGoogle Scholar
  47. 47.
    N. Jagtap, M. Bhagwat, P. Awati, V. Ramaswamy, ThermochimicaActa 427, 37 (2005)CrossRefGoogle Scholar
  48. 48.
    N.R. Mathew, E.R. Morales, M.A.C. Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)CrossRefGoogle Scholar
  49. 49.
    R.G. Freitas, M.A. Santanna, E.C. Pereira, J. Power Sources 251, 178 (2014)CrossRefGoogle Scholar
  50. 50.
    T. Luttrell, S. Hlapegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 1 (2014)Google Scholar
  51. 51.
    R.G. Freitas, M.A. Santanna, E.C. Pereira, Electrochim. Acta 136, 404 (2014)CrossRefGoogle Scholar
  52. 52.
    W.S. Benedict, N. Gailan, E.K. Plyler, J. Chem. Phys. 24, 1139 (1956)Google Scholar
  53. 53.
    H. Liu, K. Tan, Comput. Theor. Chem. 991, 98 (2012)CrossRefGoogle Scholar
  54. 54.
    A. Vittadini, A. Selloni, F.P. Rotzinger, M. Graetzel, Phys. Rev. Lett. 81, 2954 (1998)CrossRefGoogle Scholar
  55. 55.
    A. Fahmi, C. Minot, Surf. Sci. 304, 343–359 (1994)CrossRefGoogle Scholar
  56. 56.
    N.N. Nair, Molecular dynamic investigation of clusters and solids, Ph.D. Thesis; Theoretical Chemistry Institute, Hannover University, 2004Google Scholar
  57. 57.
    K. Jug, N.N. Nair, T. Bredow, Surf. Sci. 596, 108 (2005)CrossRefGoogle Scholar
  58. 58.
    I. Onal, S. Soyer, S. Senkan, Surf. Sci. 600, 2457 (2006)CrossRefGoogle Scholar
  59. 59.
    R. Erdogan, I. Onal, Int. Quant. Chem. 111, 2149 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leonardo H. Morais
    • 1
  • Eder A. Pereira
    • 2
  • Maykon A. Montanhera
    • 2
  • Cinthia S. C. Batista
    • 1
  • Ailton J. Terezo
    • 1
  • Gabriel L. C. de Souza
    • 1
  • Edna R. Spada
    • 3
  • Fernando R. de Paula
    • 2
  • Renato G. Freitas
    • 1
  1. 1.LCM - Laboratório Computacional de Materiais - Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Faculdade de EngenhariaUniversidade Estadual PaulistaIlha SolteiraBrazil
  3. 3.Instituto de Física de São CarlosUniversidade de São Paulo - USPSão CarlosBrazil

Personalised recommendations