Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18271–18281 | Cite as

Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers

  • Mervat Ismail Mohammed
  • Suzan Salah Fouad
  • Neeraj Mehta
Article
  • 24 Downloads

Abstract

The present study describes the fabrication of nano-composites of (PVDF)/(rGO) using solution–cast method. We employed two characterizations for PVDF/rGO nano-composites, Scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, the SEM indicates that the PVDF matrix consists of pores with the presence of globular structures that increases with the increasing rGO concentration, while the FTIR have been used to confirm the interplay between rGO and PVDF matrix. The dielectric measurements of PVDF/rGO nano-composites show a high dielectric constant and low dielectric loss factor. Moreover, frequency and temperature dependent behavior of a.c. conductivity has been carried out in the respective ranges of 102–106 Hz and 303–393 K. Results of a.c. conductivity and the frequency exponent have been found to obey the theory of correlated barrier hopping. Further analysis shows that thermally assisted a.c. conduction shows the compensation effect. The role of rGO over other recent fillers is also summarized by a comparative tabulation of data available in the literature.

Notes

Acknowledgements

NM wishes to acknowledge the financial assistance received under UPE Programme (Scheme No. 4204).

References

  1. 1.
    K.S. Novoselo, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Chen, H. Feng, J. Li, G. Oxide, Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Fan, C. Zhang, J. He, R. Hua, Y. Zhang, Y. Yang, Redox chemistry between graphene oxide and mercaptan. J. Mater. Chem. 22, 18564–18571 (2012)CrossRefGoogle Scholar
  5. 5.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted grapheme. Adv. Mater. 23, 1089–1115 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)CrossRefGoogle Scholar
  9. 9.
    O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Seveyrat, A. Chalkha, D. Guyomar, L. Lebrun, Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications. J. Appl. Phys. 111, 104904 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37, 1–116 (1993)CrossRefGoogle Scholar
  14. 14.
    Y. Zhen, J. Arredondo, Z. Guang-Lin, Unusual dielectric loss properties of carbon nanotube—polyvinylidene fluoride composites in low frequency region (100 Hz < f < 1 MHz). Open J. Organic Polym. Mater. 3, 99–103 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfcaes 4, 6273–6279 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Phys. Status Solidi (A) 208, 459–461 (2011)CrossRefGoogle Scholar
  17. 17.
    X.J. Zhang, G.S. Wang, Proceedings of the 16th International Conference on Nanotechnology, Sendai, Japan, 2016, pp. 22–25Google Scholar
  18. 18.
    P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23, 365702 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H.P. Lee, Recent advances in graphene based polymer composites. Polym. Sci. 35, 1350–1375 (2010)Google Scholar
  20. 20.
    H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRefGoogle Scholar
  21. 21.
    Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43, 6716–6723 (2010)CrossRefGoogle Scholar
  22. 22.
    L. Kan, Z. Xu, C. Gao, General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44, 444–452 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Wang, Y. Bao, J.-W. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRefGoogle Scholar
  24. 24.
    W.K. Chee, H.N. Lim, N.M. Huang, I. Harrison, Nanocomposites of graphene/polymers: a review. RSC Adv. 5, 68014–68051 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Qin, X. Li, X. Zhao, D. Liu, C. He, Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces 7, 8427–8436 (2015)CrossRefGoogle Scholar
  26. 26.
    T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 5, 7880–7889 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Zhao, X. Xu, J. Chen, G. Wang, F. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59–66 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Yu, Y. Wang, W. Xiao, Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films Yang. J. Mater. Chem. A 1, 10727–10735 (2013)CrossRefGoogle Scholar
  29. 29.
    Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8, 4553–4564 (2015)CrossRefGoogle Scholar
  30. 30.
    A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, M. Mrlik, M.K. Hassan, Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 133, 43594 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Al-Saygh, D. Ponnamma, M. Al., P. Maadeed, P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9, 33 (2017)CrossRefGoogle Scholar
  32. 32.
    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Zhou, J. Zuo, W. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. A 43, 658–664 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Deng, Y. Zhang, Y. Wang, M. Li, J. Yuan, J. Bai, A facile way to fabricate novel 2–3-type composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric properties. Composites Part A 43, 842–846 (2012)CrossRefGoogle Scholar
  35. 35.
    L. Yang, J.H. Qiu, H.L. Ji, K.J. Zhu, J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Composites Part A 65, 125–134 (2014)CrossRefGoogle Scholar
  36. 36.
    J.W. Zha, X. Meng, D. Wang, Z.M. Dang, R.K.Y. Li, Dielectric properties of poly(vinylidene fluoride) nanocomposites filled with surface coated BaTiO3 by SnO2 nanodots. Appl. Phys. Lett. 104, 072906 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Li, Y. Shi, F. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Composites Part A 78, 318–326 (2015)CrossRefGoogle Scholar
  38. 38.
    C. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, Q. Lei, Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6, 33508 (2016)CrossRefGoogle Scholar
  39. 39.
    R. Li, Z. Zhao, Z. Chen, J. Pei, Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Mater. Express 7, 536–540 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng, Q. Fu, Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Composites Part A 104, 24–31 (2018)CrossRefGoogle Scholar
  41. 41.
    F. Li Wang, J. Gao, K. Xu, J. Zhang, M. Kong, H. Reece, Yan, Enhanced dielectric tunability and energy storage properties of platelike (Ba0.6Sr0.4)TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 158, 112–120 (2018)CrossRefGoogle Scholar
  42. 42.
    Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852–857 (2007)CrossRefGoogle Scholar
  43. 43.
    F. He, S. Lau, H.L. Chan, J.T. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)CrossRefGoogle Scholar
  44. 44.
    Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Fundamentals, processes and applications of high permittivity polymer-matric composites. Prog. Mater. Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  45. 45.
    H.X. Tang, G.J. Ehlert, Y.R. Lin, H.A. Sodano, Highly efficient synthesis of graphene nanocomposites. Nano Lett. 12, 84–90 (2012)CrossRefGoogle Scholar
  46. 46.
    X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, Y. Wang, Z.-W. Zhou, Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites Part B 109, 91–100 (2017)CrossRefGoogle Scholar
  47. 47.
    I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)CrossRefGoogle Scholar
  48. 48.
    Z.-M. Dang, T. Zhou, S.-H. Yao, J.-K. Yuan, J.-W. Zha, H.-T. Song, J.-Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21, 2077–2082 (2009)CrossRefGoogle Scholar
  49. 49.
    J.-K. Yuan, W.-L. Li, S.-H. Yao, Y.-Q. Lin, A. Sylvestre, J. Bai, High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett. 98, 032901 (2011)CrossRefGoogle Scholar
  50. 50.
    H. Lu, X. Zhang, H. Zhang, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J. Appl. Phys. 100, 054104 (2006)CrossRefGoogle Scholar
  51. 51.
    A. Hassen, T. Hanafy, S. El-Sayed, A. Himanshu, Dielectric relaxation and alternating current conductivity of polyvinylidene fluoride doped with lanthanum chloride. J. Appl. Phys. 110, 114119 (2011)CrossRefGoogle Scholar
  52. 52.
    S. El-Sayed, T.A. Abdel-Baset, A. Hassen, Dielectric properties of PVDF thin films doped with 3 wt.% of RCl3 (R = Gd or Er). AIP Adv. 4, 037114 (2014)CrossRefGoogle Scholar
  53. 53.
    G.A. Samara, F. Baur, The effects of pressure on the β molecular relaxation and phase transitions of the ferroelectric copolymer P(VDF0.7TrFe0.3). Ferroelectrics 135, 385–399 (1992)CrossRefGoogle Scholar
  54. 54.
    J.Ross Macdonald, Simplified impedance/frequency-response results for intrinsically conducting solids and liquids. J. Chem. Phys. 61, 3977–3996 (1974)CrossRefGoogle Scholar
  55. 55.
    A.C. Lopes, C.M. Costa, R.S. Serra, I.C. Neves, J.L.G. Ribelles, S.L. Mendez, Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Sol. Stat. Ionics 235, 42–50 (2013)CrossRefGoogle Scholar
  56. 56.
    P. Thomas, S. Satapathy, K. Dwarakanath, K.B. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4, 632–643 (2010)CrossRefGoogle Scholar
  57. 57.
    J. Tahalyani, K.K. Rahangdale, K. Balasubramanian, The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 6, 69733 – 69742 (2016)CrossRefGoogle Scholar
  58. 58.
    G.C. Psarras, Hopping conductivity in polymer matrix–metal particles composites. Composites Part A 37, 1545–1553 (2006)CrossRefGoogle Scholar
  59. 59.
    G.N. Tomara, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Dielectric relaxation mechanisms in polyoxymethylene/polyurethane/layered silicates hybrid nanocomposites. Eur. Polym. J. 95, 304–313 (2017)CrossRefGoogle Scholar
  60. 60.
    W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, Novel method for the fabrication of. flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C 118, 10567–10573 (2014)CrossRefGoogle Scholar
  61. 61.
    S. Mahrous, Dielectric analysis of the α-relaxation of PVC stabilized with cadmium laurate. Polym. Int. 40, 261–267 (1996)CrossRefGoogle Scholar
  62. 62.
    G.K. Narula, P.K.C. Pillai, Dielectric and TSC study in a semi-compatible solution-mixed PVDF-PMMA blend. J. Mater. Sci. Lett. 8, 608–611 (1989)CrossRefGoogle Scholar
  63. 63.
    V. Rao, P.V. Ashokan, M.H. Shridhar, Studies of dielectric relaxation and a.c conductivity in cellulose acetate hydrogen phthalate-poly(methyl methacrylate) blends. Mater. Sci. Eng. A 281, 213–220 (2000)CrossRefGoogle Scholar
  64. 64.
    A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation. Nucl. Instrum. Methods Phys. Res. B 321, 41–48 (2014)CrossRefGoogle Scholar
  65. 65.
    A. Belal, M. Amin, H. Hassan, A. Abd El-Mongy, B. Kamal, K. Ibrahim, The role of BaTiO3 on the dielectric properties of polyvinyl chloride. Phys. Stat. Solidi (A) 144, 53–57 (1994)CrossRefGoogle Scholar
  66. 66.
    A. Hassen, A.M. El Sayed, W.M. Morsi, S. El-Sayed, Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J. Appl. Phys. 112, 093525 (2012)CrossRefGoogle Scholar
  67. 67.
    T.A. Hanafy, Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J. Appl. Polym. Sci. 108, 2540–2549 (2008)CrossRefGoogle Scholar
  68. 68.
    H.M. Ragab, Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentrations of nickel chloride Physica B 2011, 406, 3759–3767CrossRefGoogle Scholar
  69. 69.
    N. Mehta, Meyer–Neldel rule in chalcogenide glasses: recent observations and their consequences. Curr Opin Solid State Mater. Sci. 14, 95–106 (2010)CrossRefGoogle Scholar
  70. 70.
    A.-W. Fouad, Signature of the Meyer–Neldel rule on the correlated barrier-hopping model. J. Appl. Phys. 91, 265–270 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations