Advertisement

Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers

  • 157 Accesses

  • 2 Citations

Abstract

The present study describes the fabrication of nano-composites of (PVDF)/(rGO) using solution–cast method. We employed two characterizations for PVDF/rGO nano-composites, Scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, the SEM indicates that the PVDF matrix consists of pores with the presence of globular structures that increases with the increasing rGO concentration, while the FTIR have been used to confirm the interplay between rGO and PVDF matrix. The dielectric measurements of PVDF/rGO nano-composites show a high dielectric constant and low dielectric loss factor. Moreover, frequency and temperature dependent behavior of a.c. conductivity has been carried out in the respective ranges of 102–106 Hz and 303–393 K. Results of a.c. conductivity and the frequency exponent have been found to obey the theory of correlated barrier hopping. Further analysis shows that thermally assisted a.c. conduction shows the compensation effect. The role of rGO over other recent fillers is also summarized by a comparative tabulation of data available in the literature.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Change history

  • 16 January 2020

    Unfortunately, the original version of this article has been published with error in Abstract, Table��1, Sect.��3.5 and Figs.��5 and 9.

References

  1. 1.

    K.S. Novoselo, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

  2. 2.

    D. Chen, H. Feng, J. Li, G. Oxide, Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)

  3. 3.

    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

  4. 4.

    D. Fan, C. Zhang, J. He, R. Hua, Y. Zhang, Y. Yang, Redox chemistry between graphene oxide and mercaptan. J. Mater. Chem. 22, 18564–18571 (2012)

  5. 5.

    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

  6. 6.

    H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted grapheme. Adv. Mater. 23, 1089–1115 (2011)

  7. 7.

    R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011)

  8. 8.

    Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)

  9. 9.

    O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)

  10. 10.

    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

  11. 11.

    L. Seveyrat, A. Chalkha, D. Guyomar, L. Lebrun, Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications. J. Appl. Phys. 111, 104904 (2012)

  12. 12.

    Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)

  13. 13.

    C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37, 1–116 (1993)

  14. 14.

    Y. Zhen, J. Arredondo, Z. Guang-Lin, Unusual dielectric loss properties of carbon nanotube—polyvinylidene fluoride composites in low frequency region (100 Hz < f < 1 MHz). Open J. Organic Polym. Mater. 3, 99–103 (2013)

  15. 15.

    D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfcaes 4, 6273–6279 (2012)

  16. 16.

    L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Phys. Status Solidi (A) 208, 459–461 (2011)

  17. 17.

    X.J. Zhang, G.S. Wang, Proceedings of the 16th International Conference on Nanotechnology, Sendai, Japan, 2016, pp. 22–25

  18. 18.

    P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23, 365702 (2012)

  19. 19.

    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H.P. Lee, Recent advances in graphene based polymer composites. Polym. Sci. 35, 1350–1375 (2010)

  20. 20.

    H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)

  21. 21.

    Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43, 6716–6723 (2010)

  22. 22.

    L. Kan, Z. Xu, C. Gao, General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44, 444–452 (2011)

  23. 23.

    D. Wang, Y. Bao, J.-W. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)

  24. 24.

    W.K. Chee, H.N. Lim, N.M. Huang, I. Harrison, Nanocomposites of graphene/polymers: a review. RSC Adv. 5, 68014–68051 (2015)

  25. 25.

    A. Qin, X. Li, X. Zhao, D. Liu, C. He, Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces 7, 8427–8436 (2015)

  26. 26.

    T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 5, 7880–7889 (2015)

  27. 27.

    C. Zhao, X. Xu, J. Chen, G. Wang, F. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59–66 (2014)

  28. 28.

    J. Yu, Y. Wang, W. Xiao, Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films Yang. J. Mater. Chem. A 1, 10727–10735 (2013)

  29. 29.

    Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8, 4553–4564 (2015)

  30. 30.

    A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, M. Mrlik, M.K. Hassan, Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 133, 43594 (2016)

  31. 31.

    A. Al-Saygh, D. Ponnamma, M. Al., P. Maadeed, P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9, 33 (2017)

  32. 32.

    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)

  33. 33.

    W. Zhou, J. Zuo, W. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. A 43, 658–664 (2012)

  34. 34.

    Y. Deng, Y. Zhang, Y. Wang, M. Li, J. Yuan, J. Bai, A facile way to fabricate novel 2–3-type composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric properties. Composites Part A 43, 842–846 (2012)

  35. 35.

    L. Yang, J.H. Qiu, H.L. Ji, K.J. Zhu, J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Composites Part A 65, 125–134 (2014)

  36. 36.

    J.W. Zha, X. Meng, D. Wang, Z.M. Dang, R.K.Y. Li, Dielectric properties of poly(vinylidene fluoride) nanocomposites filled with surface coated BaTiO3 by SnO2 nanodots. Appl. Phys. Lett. 104, 072906 (2014)

  37. 37.

    Y. Li, Y. Shi, F. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Composites Part A 78, 318–326 (2015)

  38. 38.

    C. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, Q. Lei, Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6, 33508 (2016)

  39. 39.

    R. Li, Z. Zhao, Z. Chen, J. Pei, Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Mater. Express 7, 536–540 (2017)

  40. 40.

    Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng, Q. Fu, Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Composites Part A 104, 24–31 (2018)

  41. 41.

    F. Li Wang, J. Gao, K. Xu, J. Zhang, M. Kong, H. Reece, Yan, Enhanced dielectric tunability and energy storage properties of platelike (Ba0.6Sr0.4)TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 158, 112–120 (2018)

  42. 42.

    Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852–857 (2007)

  43. 43.

    F. He, S. Lau, H.L. Chan, J.T. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)

  44. 44.

    Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Fundamentals, processes and applications of high permittivity polymer-matric composites. Prog. Mater. Sci. 57, 660–723 (2012)

  45. 45.

    H.X. Tang, G.J. Ehlert, Y.R. Lin, H.A. Sodano, Highly efficient synthesis of graphene nanocomposites. Nano Lett. 12, 84–90 (2012)

  46. 46.

    X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, Y. Wang, Z.-W. Zhou, Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites Part B 109, 91–100 (2017)

  47. 47.

    I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)

  48. 48.

    Z.-M. Dang, T. Zhou, S.-H. Yao, J.-K. Yuan, J.-W. Zha, H.-T. Song, J.-Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21, 2077–2082 (2009)

  49. 49.

    J.-K. Yuan, W.-L. Li, S.-H. Yao, Y.-Q. Lin, A. Sylvestre, J. Bai, High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett. 98, 032901 (2011)

  50. 50.

    H. Lu, X. Zhang, H. Zhang, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J. Appl. Phys. 100, 054104 (2006)

  51. 51.

    A. Hassen, T. Hanafy, S. El-Sayed, A. Himanshu, Dielectric relaxation and alternating current conductivity of polyvinylidene fluoride doped with lanthanum chloride. J. Appl. Phys. 110, 114119 (2011)

  52. 52.

    S. El-Sayed, T.A. Abdel-Baset, A. Hassen, Dielectric properties of PVDF thin films doped with 3 wt.% of RCl3 (R = Gd or Er). AIP Adv. 4, 037114 (2014)

  53. 53.

    G.A. Samara, F. Baur, The effects of pressure on the β molecular relaxation and phase transitions of the ferroelectric copolymer P(VDF0.7TrFe0.3). Ferroelectrics 135, 385–399 (1992)

  54. 54.

    J.Ross Macdonald, Simplified impedance/frequency-response results for intrinsically conducting solids and liquids. J. Chem. Phys. 61, 3977–3996 (1974)

  55. 55.

    A.C. Lopes, C.M. Costa, R.S. Serra, I.C. Neves, J.L.G. Ribelles, S.L. Mendez, Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Sol. Stat. Ionics 235, 42–50 (2013)

  56. 56.

    P. Thomas, S. Satapathy, K. Dwarakanath, K.B. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4, 632–643 (2010)

  57. 57.

    J. Tahalyani, K.K. Rahangdale, K. Balasubramanian, The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 6, 69733 – 69742 (2016)

  58. 58.

    G.C. Psarras, Hopping conductivity in polymer matrix–metal particles composites. Composites Part A 37, 1545–1553 (2006)

  59. 59.

    G.N. Tomara, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Dielectric relaxation mechanisms in polyoxymethylene/polyurethane/layered silicates hybrid nanocomposites. Eur. Polym. J. 95, 304–313 (2017)

  60. 60.

    W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, Novel method for the fabrication of. flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C 118, 10567–10573 (2014)

  61. 61.

    S. Mahrous, Dielectric analysis of the α-relaxation of PVC stabilized with cadmium laurate. Polym. Int. 40, 261–267 (1996)

  62. 62.

    G.K. Narula, P.K.C. Pillai, Dielectric and TSC study in a semi-compatible solution-mixed PVDF-PMMA blend. J. Mater. Sci. Lett. 8, 608–611 (1989)

  63. 63.

    V. Rao, P.V. Ashokan, M.H. Shridhar, Studies of dielectric relaxation and a.c conductivity in cellulose acetate hydrogen phthalate-poly(methyl methacrylate) blends. Mater. Sci. Eng. A 281, 213–220 (2000)

  64. 64.

    A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation. Nucl. Instrum. Methods Phys. Res. B 321, 41–48 (2014)

  65. 65.

    A. Belal, M. Amin, H. Hassan, A. Abd El-Mongy, B. Kamal, K. Ibrahim, The role of BaTiO3 on the dielectric properties of polyvinyl chloride. Phys. Stat. Solidi (A) 144, 53–57 (1994)

  66. 66.

    A. Hassen, A.M. El Sayed, W.M. Morsi, S. El-Sayed, Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J. Appl. Phys. 112, 093525 (2012)

  67. 67.

    T.A. Hanafy, Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J. Appl. Polym. Sci. 108, 2540–2549 (2008)

  68. 68.

    H.M. Ragab, Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentrations of nickel chloride Physica B 2011, 406, 3759–3767

  69. 69.

    N. Mehta, Meyer–Neldel rule in chalcogenide glasses: recent observations and their consequences. Curr Opin Solid State Mater. Sci. 14, 95–106 (2010)

  70. 70.

    A.-W. Fouad, Signature of the Meyer–Neldel rule on the correlated barrier-hopping model. J. Appl. Phys. 91, 265–270 (2002)

Download references

Acknowledgements

NM wishes to acknowledge the financial assistance received under UPE Programme (Scheme No. 4204).

Author information

Correspondence to Neeraj Mehta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I., Fouad, S.S. & Mehta, N. Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers. J Mater Sci: Mater Electron 29, 18271–18281 (2018). https://doi.org/10.1007/s10854-018-9941-z

Download citation