Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18200–18208 | Cite as

Suppression of trap assisted non-geminate recombination by incorporation of multilayer graphene in P3HT:PCBM for stable and efficient photovoltaic device

  • Joginder Singh
  • Neetu Prasad
  • Koteswara Rao Peta
  • P. K. Bhatnagar
Article
  • 85 Downloads

Abstract

In the present work, multilayer graphene (MLG) has been demonstrated to be a promising material for improvement in power conversion efficiency (PCE) as well as stability of the polymer based photovoltaic (PV) devices. MLG, when incorporated into the active layer of the P3HT:PCBM based PV device provides additional 2D pathways for long distance electron transport, avoiding interaction with holes and hence leading to suppression of non-geminate recombination in the device. PCE of the device is shown to improve by ~ 54% due to improvement in absorbance as well as by reduction in non-geminate recombination leading to ~ 8.9% increase in short circuit current density. Also, open circuit voltage improves by ~ 13.75% owing to increase in the fermi-level splitting due to large number of charge accumulated at the electrodes. MLG also reduces the rate of degradation of the device by the factor of ~ 1.5 by suppressing the effect of generation of deep trap levels in the active layer which in turn results in improving the stability of the device.

Notes

Acknowledgements

This work is supported by a Research and Development Grant (2015–2016) provided by the University of Delhi. The first author and one of the other authors (P. K. Bhatnagar) want to thank the University Grants Commission for the Senior Research Fellowship and Basic Scientific Research fellowship respectively. A part of the reported work (fabrication/characterization) was carried out at the IITBNF, IITB under INUP which is sponsored by DeitY, MCIT, Government of India.

References

  1. 1.
    M.S. Vezie, S. Few, I. Meager, G. Pieridou, B. Dörling, R.S. Ashraf, A.R. Goñi, H. Bronstein, I. McCulloch, S.C. Hayes, Nat. Mater. 15, 746 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, M. Chhowalla, J. Mater. Chem. 18, 306 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Credgington, F.C. Jamieson, B. Walker, T.Q. Nguyen, J.R. Durrant, Adv. Mater. 24, 2135 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Anguita, S. Silva, W. Young, J. Appl. Phys. 88, 5175 (2000)CrossRefGoogle Scholar
  5. 5.
    S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Adv. Funct. Mater. 22, 1116 (2012)CrossRefGoogle Scholar
  6. 6.
    J.C. Blakesley, D. Neher, Phys. Rev. B 84, 075210 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Cheng, X. Zhan, Chem. Soc. Rev. 45, 2544 (2016)CrossRefGoogle Scholar
  8. 8.
    F.C. Krebs, K. Norrman, Prog. Photovolt. Res. Appl. 15, 697 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Steim, F.R. Kogler, C.J. Brabec, J. Mater. Chem. 20, 2499 (2010)CrossRefGoogle Scholar
  10. 10.
    N. Camaioni, G. Ridolfi, G. Casalbore-Miceli, G. Possamai, L. Garlaschelli, M. Maggini, Sol. Energy Mater. Sol. Cells 76, 107 (2003)CrossRefGoogle Scholar
  11. 11.
    D. Credgington, R. Hamilton, P. Atienzar, J. Nelson, J.R. Durrant, Adv. Funct. Mater. 21, 2744 (2011)CrossRefGoogle Scholar
  12. 12.
    X. Wan, G. Long, L. Huang, Y. Chen, Adv. Mater. 23, 5342 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Liu, D. He, Y. Wang, H. Wu, J. Wang, Synth. Met. 160, 1036 (2010)CrossRefGoogle Scholar
  14. 14.
    P. Robaeys, F. Bonaccorso, E. Bourgeois, J. D’Haen, W. Dierckx, W. Dexters, D. Spoltore, J. Drijkoningen, J. Liesenborgs, A. Lombardo, A.C. Ferrari, F. Van Reeth, K. Haenen, J.V. Manca, M. Nesladek, Appl. Phys. Lett. 105, 083306 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Yu, V.K. Kuppa, Mater. Lett. 99, 72 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Ran, M. Wang, W. Gao, J. Ding, Y. Shi, X. Song, H. Chen, Z. Ren, J. Phys. Chem. C 116, 23053 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Bégué, E. Guille, S. Metz, M. Arnaud, H.S. Silva, M. Seck, P. Fayon, C. Dagron-Lartigau, P. Iratcabal, R. Hiorns, RSC Adv. 6, 13653 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Singh, N. Prasad, K.R. Peta, P. Bhatnagar, Mater. Res. Express 4, 085101 (2017)CrossRefGoogle Scholar
  19. 19.
    M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, D.C. Olson, M.T. Lloyd, P. Morvillo, E.A. Katz, Sol. Energy Mater. Sol. Cells 95, 1253 (2011)CrossRefGoogle Scholar
  20. 20.
    X.M. Jiang, R. Osterbacka, O. Korovyanko, C.P. An, B. Horovitz, R.A. Janssen, Z.V. Vardeny, Adv. Funct. Mater. 12, 587 (2002)CrossRefGoogle Scholar
  21. 21.
    B. Kadem, A. Hassan, W. Cranton, P3HT:PCBM-based organic solar cells: the effects of different PCBM derivatives. In 32nd European Photovoltaic Solar Energy Conference and Exhibition-Munich, 2016, p. 1332Google Scholar
  22. 22.
    S.M. Cassemiro, F. Thomazi, L.S. Roman, A. Marletta, L. Akcelrud, Synth. Met. 159, 1975 (2009)CrossRefGoogle Scholar
  23. 23.
    V. Saini, Z. Li, S. Bourdo, E. Dervishi, Y. Xu, X. Ma, V.P. Kunets, G.J. Salamo, T. Viswanathan, A.R. Biris, D. Saini, J. Phys. Chem. 113, 8023 (2009)CrossRefGoogle Scholar
  24. 24.
    B.K. Kuila, S. Malik, S.K. Batabyal, A.K. Nandi, Macromolecules 40 (2007) 278CrossRefGoogle Scholar
  25. 25.
    J. Arranz-Andrés, W.J. Blau, Carbon 46, 2067 (2008)CrossRefGoogle Scholar
  26. 26.
    G. Lakhwani, A. Rao, R.H. Friend, Annu. Rev. Phys. Chem. 65, 557 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L.J.A. Koster, Nat. Commun. 6, 7083 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Rizvi, P. Mantri, B. Mazhari, J. Appl. Phys. 115, 244502 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Cheung, N. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  30. 30.
    F. Yakuphanoglu, Sens. Actuators A 141, 383 (2008)CrossRefGoogle Scholar
  31. 31.
    Q. Chen, L. Mao, Y. Li, T. Kong, N. Wu, C. Ma, S. Bai, Y. Jin, D. Wu, W. Lu, Nat. Commun. 6, 7745 (2015)CrossRefGoogle Scholar
  32. 32.
    F.S. Morgenstern, M.L. Böhm, R.J. Kist, A. Sadhanala, S. Gélinas, A. Rao, N.C. Greenham, J. Phys. Chem. C 120, 19064 (2016)CrossRefGoogle Scholar
  33. 33.
    D. Gao, M.G. Helander, Z.B. Wang, D.P. Puzzo, M.T. Greiner, Z.H. Lu, Adv. Mater. 22, 5404 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, V. Dyakonov, Org. Electron. 11, 1693 (2010)CrossRefGoogle Scholar
  35. 35.
    A. Guerrero, P.P. Boix, L.F. Marchesi, T. Ripolles-Sanchis, E.C. Pereira, G. Garcia-Belmonte, Sol. Energy Mater. Sol. Cells 100, 185 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic ScienceUniversity of DelhiNew DelhiIndia
  2. 2.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations