Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18105–18110 | Cite as

Effects of sintering temperature on the microstructure and thermoelectric properties of mesostructured Co4Sb11.5Te0.5 skutterudites dispersed nano-TiN

  • Houjiang Yang
  • Pengfei Wen
  • Yan Zhu
  • Bo Duan
  • Xilong Zhou
  • Pengcheng Zhai
Article
  • 55 Downloads

Abstract

The mesostructured skutterudites Co4Sb11.5Te0.5 + nano-TiN composites are prepared through ball milling and spark plasma sintering (SPS). The influence of the various SPS temperatures within the range of 813–933 K on the microstructure and thermoelectric properties are focus in this work. The average grain sizes of the skutterudites increase from ~ 110 to ~ 500 nm with the increasing SPS temperature, while the densities of composites decrease from 7.02 to 6.26 g cm−3. Additionally, the phase of CoTe2 is detected in the samples sintered at 903–933 K. With the SPS temperature increasing from 813 to 903 K, the electrical conductivity and thermal conductivity increase simultaneously, and then decrease when SPS temperature rises to 933 K. The absolute value of Seebeck coefficient shows no clear changes when SPS temperature is not higher than 873 K but then slightly decreases with the increasing of SPS temperature. At last, the optimum SPS temperature is determined as 873 K, the ZT value of 1.07 at 800 K for the sample SPSed at 873 K is obtained, which is 11.5% higher than that of the sample SPSed at 903 K.

Notes

Acknowledgements

This study is supported by the National Natural Science Foundation of China (11402182, 11502182), the Fundamental Research Funds for the Central Universities (WUT: 2017IA003. 2018IB002), and the open foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics (WUT: TAM201802).

References

  1. 1.
    L.E. Bell, Science 321, 1457–1461 (2008)CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)CrossRefGoogle Scholar
  3. 3.
    M.R. Bravo, A. Moure, J.F. Fernández, M.M. González, RSC Adv. 5, 41653–41667 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, J. Appl. Phys. 86, 3780–3786 (1999)CrossRefGoogle Scholar
  5. 5.
    E. Alleno, E. Zehani, M. Gaborit, V. Orodniichuk, B. Lenoir, M. Benyahia, J. Alloy. Compd. 692, 676–686 (2017)CrossRefGoogle Scholar
  6. 6.
    T. Dahal, Q. Jie, G. Joshi, S. Chen, C.F. Guo, Y.C. Lan, Z.F. Ren, Acta. Mater. 75, 316–321 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Deng, H.A. Ma, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, N. Dong, S.Z. Zheng, X. Jia, Mater. Lett. 63, 2139–2141 (2009)CrossRefGoogle Scholar
  8. 8.
    M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, Adv. Funct. Mater. 14, 1189–1196 (2004)CrossRefGoogle Scholar
  9. 9.
    X.Y. Zhou, G.Y. Wang, L. Zhang, H. Chi, X.L. Su, J. Sakamoto, C. Uher, J. Mater. Chem. 22, 2958–2964 (2012)CrossRefGoogle Scholar
  10. 10.
    J.L. Mi, T.J. Zhu, X.B. Zhao, J. Ma, J. Appl. Phys. 101, 054314 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, C. Uher, J. Phys. D 42, 145409 (2009)CrossRefGoogle Scholar
  12. 12.
    B. Feng, J. Xie, G.S. Cao, T.J. Zhu, X.B. Zhao, J. Mater. Chem. A 1, 13111 (2013)CrossRefGoogle Scholar
  13. 13.
    P.F. Wen, H.J. Yang, X.L. Zhou, B. Duan, P.C. Zhai, Mater. Lett. 223, 190–193 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A.K. Srivastava, A. Dhar, Nanoscale 7, 12474–12483 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, M.S. Toprak, J. Alloy. Compd. 612, 293–300 (2014)CrossRefGoogle Scholar
  16. 16.
    W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, J. Phys. D 40, 566–572 (2007)CrossRefGoogle Scholar
  17. 17.
    P.F. Wen, B. Duan, P.C. Zhai, P. Li, Q.J. Zhang, J. Mater. Sci-Mater. El. 24, 5155–5161 (2013)CrossRefGoogle Scholar
  18. 18.
    D.S. Stone, K.B. Yoder, W.D. Sproul, J. Vac. Sci. Technol. A 9, 2543–2547 (1991)CrossRefGoogle Scholar
  19. 19.
    G. Rogl, P. Rogl, Sci. Adv. Mater. 3, 517–538 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Usenko, D. Moskovskikh, A. Korotitskiy, M. Gorshenkov, E. Zakharova, A. Fedorov, Y. Parkhomenko, V. Khovaylo, Scripta Mater. 146, 295–299 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Scherrer, Math. Phys. Klasse. 2, 98–100 (1918)Google Scholar
  22. 22.
    Z. Qin, K.F. Cai, S. Chen, Y. Du, J. Mater. Sci-Mater. El. 24, 4142–4147 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Pei, B.P. Zhang, J.F. Li, D.D. Liang, J. Alloy. Compd. 728, 694–700 (2017)CrossRefGoogle Scholar
  24. 24.
    S.S. Lim, J.H. Kim, B. Kwon, S.K. Kim, H.H. Park, K.S. Lee, J.M. Baik, W.J. Choi, D.I. Kim, D.B. Hyun, J.S. Kim, S.H. Baek, J. Alloy. Compd. 678, 396–402 (2016)CrossRefGoogle Scholar
  25. 25.
    C.C. Zhang, X.A. Fan, J. Hu, C.P. Jiang, B. Feng, Q.S. Xiang, G.Q. Li, Y.W. Li, Adv. Eng. Mater. 18, 1777–1784 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Landauer, J. Appl. Phys. 23, 779–784 (1952)CrossRefGoogle Scholar
  27. 27.
    A.U. Khan, K. Kobayashi, D.M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y.M. Xue, B.Z. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano Energy 31, 152–159 (2017)CrossRefGoogle Scholar
  28. 28.
    W.Y. Zhao, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, Y.Z. Pei, Nat. Nanotechnol. 12, 55–60 (2017)CrossRefGoogle Scholar
  29. 29.
    B.C. Sales, B.C. Chakoumakos, V. Keppens, J.R. Thompson, Phys. Rev. B 56, 15081–15089 (1997)CrossRefGoogle Scholar
  30. 30.
    C.W. Nan, R. Birringer, Phys. Rev. B 57, 8264–8268 (1998)CrossRefGoogle Scholar
  31. 31.
    M. Takashiri, S. Tanaka, H. Hagino, K. Miyazaki, J. Appl. Phys. 112, 084315 (2012)CrossRefGoogle Scholar
  32. 32.
    P.F. Wen, P. Li, Q.J. Zhang, F.J. Yi, L.S. Liu, P.C. Zhai, J. Electron. Mater. 38, 1200–1205 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Houjiang Yang
    • 1
  • Pengfei Wen
    • 1
  • Yan Zhu
    • 2
  • Bo Duan
    • 1
  • Xilong Zhou
    • 1
  • Pengcheng Zhai
    • 1
  1. 1.Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of ScienceWuhan University of TechnologyWuhanChina
  2. 2.School of Civil and Architectural EngineeringWuhan Huaxia University of TechnologyWuhanChina

Personalised recommendations