Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18098–18104 | Cite as

Investigation of the substrate effect for Zr doped ZnO thin film deposition by thermionic vacuum arc technique

  • Uğur Demirkol
  • Suat Pat
  • Reza Mohammadigharehbagh
  • Caner Musaoğlu
  • Mustafa Özgür
  • Saliha Elmas
  • Soner Özen
  • Şadan Korkmaz
Article

Abstract

ZnO is a fundamental wide band gap semiconductor. Especially, doped elements change the optical properties of the ZnO thin film, drastically. Doped ZnO semiconductor is a promising materials for the transparent conductive oxide layer. Especially, Zr doped ZnO is a potential material for the high performance TCO. In this paper, ZnO semiconductors were doped with Zr element and microstructural, surface and optical properties of the Zr doped ZnO thin films were investigated. Zr doped ZnO thin films were deposited thermionic vacuum arc (TVA) technique. TVA is a rapid and high vacuum deposition method. A glass, polyethylene terephthalate and Si wafer (111) were used as a substrate material. Zr doped ZnO thin films deposited by TVA technique and their substrate effect investigated. As a results, deposited thin films has a high transparency. The crystal orientation of the films are in polycrystal formation. Especially, substrate crystal orientation strongly change the crystal formation of the films. Substrate crystal structure can change the optical band gap, microstructural properties and deposited layer formation. According to the atomic force microscopy and field emission scanning electron microscopy measurements, all deposited layer shows homogeneous, compact and low roughness. The band values of the deposited thin film were approximately found as to be 3.1–3.4 eV. According to the results, Zr elements created more optical defect and shifted to the band gap value towards to blue region.

Notes

Acknowledgements

This research activity was supported by the Eskişehir Osmangazi University scientific research council, Grant Number is 201719041.

References

  1. 1.
    S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J. Optoelectron. Adv. Mater. 10(10), 2578–2583 (2008)Google Scholar
  2. 2.
    E.M. Fortunato, P.M. Barquinha, A.C.M.B.G. Pimentel, A.M. Goncalves, A.J. Marques, L.M. Pereira, R.F. Martins, Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17(5), 590–594 (2005)CrossRefGoogle Scholar
  3. 3.
    P. Nunes, E. Fortunato, R. Martins, Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films 383(1–2), 277–280 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Willander, Q.X. Zhao, Q.H. Hu, P. Klason, V. Kuzmin, S.M. Al-Hilli, O. Nur,.Y.E. Lozovik, Fundamentals and properties of zinc oxide nanostructures: optical and sensing applications. Superlatt. Microstruct. 43(4), 352–361 (2008)CrossRefGoogle Scholar
  5. 5.
    F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee, B.C. Shin, Y.S. Yu, Blueshift of near band edge emission in Mg doped ZnO thin films and aging. J. Appl. Phys. 95(9), 4772–4776 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Miki-Yoshida, J. Morales, J. Solis, Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 373(1–2), 137–140 (2000)Google Scholar
  7. 7.
    H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115(1), 247–251 (2006)CrossRefGoogle Scholar
  8. 8.
    V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4(5), 2717–2725 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Pat, R. Mohammadigharehbagh, C. Musaoglu, S. Özen, S. Korkmaz, Investigation of the surface, morphological and optical properties of boron-doped ZnO thin films deposited by thermionic vacuum arc technique. Mater. Res. Express (2018).  https://doi.org/10.1088/2053-1591/aacc9a CrossRefGoogle Scholar
  10. 10.
    T. Srinivasulu, K. Saritha, K.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 3(2), 76–85 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)CrossRefGoogle Scholar
  13. 13.
    P. Uikey, K. Vishwakarma, Review of zinc oxide (ZnO) nanoparticles applications and properties. Int. J. Emerg. Technol. Comput. Sci. Electron. 21(2), 239–242 (2016)Google Scholar
  14. 14.
    C.Y. Tsay, K.S. Fan, Optimization of Zr-doped ZnO thin films prepared by sol-gel method. Mater. Trans. 49(8), 1900–1904 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films 516(8), 2017–2021 (2008)CrossRefGoogle Scholar
  16. 16.
    S.K. Yadav, S. Vyas, R. Chandra, G.P. Chaudhary, S.K. Nath, Study of electrical and optical properties of Zr-doped ZnO thin films prepared by dc reactive magnetron sputtering. Adv. Mater. Res. 67, 161–166 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Herodotou, R.E. Treharne, K. Durose, G.J. Tatlock, R.J. Potter, The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition. Materials 8(10), 7230–7240 (2015)CrossRefGoogle Scholar
  18. 18.
    M.C. Lin, Y.J. Chang, M.J. Chen, C.J. Chu, Characteristics of Zr-doped ZnO thin films grown by atomic layer deposition. J. Electrochem. Soc. 158(6), D395–D398 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, D. Gao, G. Yang, J. Zhang, Z. Shi, Z. Zhang, Z. Zhu, D. Xue, Synthesis and magnetic properties of Zr doped ZnO Nanoparticles. Nanoscale Res. Lett. 6(1), 587 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Murtaza, R. Ahmad, M.S. Rashid, M. Hassan, A. Hussnain, M.A. Khan, M.E. Haq, M.A. Shafique, S. Riaz, Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 14(2), 176–181 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Wang, C.Y. Zhang, Z.G. Wu, P.X. Yan, Effect of annealing on structural and optical properties of Zr doped ZnO film grown by RF magnetic sputtering. Mater. Sci. Forum 686, 696–705 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Maldonado, D.R. Acosta, M.D.L.L. Olvera, R. Castanedo, G. Torres, J.C. Ortega, R. Asomoza, Physical characterization of zirconium doped zinc oxide thin firms deposited by spray pyrolysis. MRS Online Proc. Libr. Arch. (1998).  https://doi.org/10.1557/PROC-520-57 CrossRefGoogle Scholar
  23. 23.
    H. Kim, J.S. Horwitz, W.H. Kim, S.B. Qadri, Z.H. Kafafi, Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes. Appl. Phys. Lett. 83(18), 3809–3811 (2003)CrossRefGoogle Scholar
  24. 24.
    V. Gokulakrishnan, K. Jeganathan, K. Ramamurthi, Growth and structural properties of ZnO and Zr doped ZnO nanostructures by low cost spray pyrolysis technique. Asian J. Chem. 25, S209–S210 (2013)CrossRefGoogle Scholar
  25. 25.
    I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles. Opt. Mater. 35(6), 1189–1193 (2013)CrossRefGoogle Scholar
  26. 26.
    V. Şenay, S. Özen, S. Pat, Ş Korkmaz, Some physical properties of a Si-doped nano-crystalline GaAs thin film grown by thermionic vacuum arc. Vacuum 119, 228–232 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Pat, S. Temel, N. Ekem, Ş Korkmaz, M. Özkan, M.Z. Balbağ, Diamond-like carbon coated on polyethylene terephthalate by thermionic vacuum arc. J. Plast. Film Sheeting 27(1–2), 127–137 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Özen, V. Şenay, S. Pat, Ş Korkmaz, AlGaAs film growth using thermionic vacuum arc (TVA) and determination of its physical properties. Eur. Phys. J. Plus 130(6), 108 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Özen, S. Pat, V. Şenay, Ş Korkmaz, B. Geçici, Some physical properties of the SiGe thin film coatings by thermionic vacuum arc (TVA). J. Nanoelectron. Optoelectron. 10(1), 56–60 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind. Eng. Chem. Res. 51(50), 16333–16345 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsEskişehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of Nanoscience and NanotechnologyEskişehir Osmangazi UniversityEskisehirTurkey
  3. 3.Department of Occupational Health and SafetyBozok UniversityYozgatTurkey

Personalised recommendations