Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18067–18073 | Cite as

Oxygen vacancy induced bismuth basic nitrate with excellent photocatalytic activity

  • Jun Shang
  • Tingzhen Chen
  • Guo Huang
  • Fei Zhou
  • Xianwei Wang
  • Lingyun Sun
Article

Abstract

A novel gray bismuth basic nitrate photocatalyst was synthesized. The results of Raman scattering spectroscopy, X-ray photoelectron spectroscopy and photoluminescence spectroscopy supported the presence of oxygen vacancies. Gray bismuth basic nitrate exhibits higher activity than white bismuth basic nitrate and BiOCl which is one of the most extensively studied bismuth-based photocatalytic material. The oxygen vacancies and internal electric field in bismuth basic nitrate possibly make it one of the promising materials for the degradation of environmental pollution.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11747069), Science and Technique R&D Program of Henan Province (No. 182102210375), Foundation of Henan Educational Committee (No. 19A140010) and Doctoral Scientific Research Foundation of Henan Normal University (No. 5101029170290).

References

  1. 1.
    T.F. Zhou, J.C. Hu, Environ. Sci. Technol. 44, 8698 (2010)CrossRefGoogle Scholar
  2. 2.
    H.L. Wang, L.S. Zhang, Z.G. Chen et al., Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  3. 3.
    G.Q. Zhang, X.W. Lou, Sci. Rep. 3, 1470 (2013)CrossRefGoogle Scholar
  4. 4.
    T.F. Zhou, W.K. Pang, C.F. Zhang et al., Acs Nano 8, 8323 (2014)CrossRefGoogle Scholar
  5. 5.
    M.R. Hoffmann, S.T. Martin, W. Choi et al., Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  6. 6.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  7. 7.
    X. Zhou, T. Shi, H. Zhou, Appl. Surf. Sci. 258, 6204 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Zhang, B. Wei, L. Zhu et al., Appl. Surf. Sci. 270, 133 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Xie, Y. Li, S. Jin et al., J. Phys. Chem. C 114, 9706 (2010)CrossRefGoogle Scholar
  10. 10.
    X.X. Hu, C. Hu, J. Solid State Chem. 180, 725 (2007)CrossRefGoogle Scholar
  11. 11.
    L.W. Zhang, Y.J. Wang, H.Y. Cheng et al., Adv. Mater. 21, 1286 (2009)CrossRefGoogle Scholar
  12. 12.
    J.X. Xia, S. Yin, H.M. Li et al., Langmuir 27, 1200 (2011)CrossRefGoogle Scholar
  13. 13.
    J.X. Xia, S. Yin, H.M. Li et al., Dalton T. 40, 5249 (2011)CrossRefGoogle Scholar
  14. 14.
    J.X. Xia, J. Zhang, S. Yin et al., J. Phys. Chem. Solids 74, 298 (2013)CrossRefGoogle Scholar
  15. 15.
    W.D. Wang, F.Q. Huang, X.P. Lin, Scripta Mater. 56, 669 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Shenawi-Khalil, V. Uvarov, Y. Kritsman et al., Catal. Commun. 12, 1136 (2011)CrossRefGoogle Scholar
  17. 17.
    H.F. Cheng, B.B. Huang, K.S. Yang et al., ChemPhysChem 11, 2167 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Saison, N. Chemin, C. Chaneac et al., J. Phys. Chem. C 115, 5657 (2011)CrossRefGoogle Scholar
  19. 19.
    J.K. Reddy, B. Srinivas, V.D. Kumari et al., ChemCatChem 1, 492 (2009)CrossRefGoogle Scholar
  20. 20.
    F.E. Osterloh, Chem. Mater. 20, 35 (2008)CrossRefGoogle Scholar
  21. 21.
    W.Z. Yin, W.Z. Wang, L. Zhou et al., J. Hazard. Mater. 173, 194 (2010)CrossRefGoogle Scholar
  22. 22.
    L.-M. Yang, G.-Y. Zhang, Y. Liu et al., RSC Adv. 5, 79715 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Xie, J. Wang, Y. Hu et al., Mater. Chem. Phys. 136, 309 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Yang, H. Liang, N. Zhu et al., Chemosphere 93, 701 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Cong, T. Yang, F. Liao et al., Mater. Res. Bull. 47, 2573 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Henry, O. Mentre, J.C. Boivin et al., Chem. mater. 13, 543 (2001)CrossRefGoogle Scholar
  27. 27.
    J. Pang, Q. Han, W. Liu et al., Appl. Surf. Sci. 422, 283 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. He, Y. Zhang, H. Huang et al., Inorg. Chem. Commun. 40, 55 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Zhang, C. Liu, F. Huang et al., Appl. Catal. B-Environ. 68, 125 (2006)CrossRefGoogle Scholar
  30. 30.
    F.M. Ascencio Aguirre, R. Herrera Becerra, Appl. Phys. A. 119, 909 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Li, R.K. Li, Dalton Trans. 43, 2577 (2014)CrossRefGoogle Scholar
  32. 32.
    J.E. Spanier, R.D. Robinson, F. Zhang et al., Phys. Rev. B 64, 245407 (2001)CrossRefGoogle Scholar
  33. 33.
    J. Shang, W.C. Hao, X.J. Lv et al., ACS Catal 4, 954 (2014)CrossRefGoogle Scholar
  34. 34.
    L.Q. Ye, K.J. Deng, F. Xu et al., Phys. Chem. Chem. Phys. 14, 82 (2012)CrossRefGoogle Scholar
  35. 35.
    L.Q. Ye, L. Zan, L.H. Tian et al., Chem. Commun. 47, 6951 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Demonstration Center for Experimental Physics EducationHenan Normal UniversityXinxiangChina
  2. 2.Laboratory of Functional Materials, College of Physics and Materials ScienceHenan Normal UniversityXinxiangChina
  3. 3.Henan Key Laboratory of Photovoltaic MaterialsXinxiangChina

Personalised recommendations