Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18059–18066 | Cite as

Construction of TiO2 NP@TiO2 NT double-layered structural photoanode to enhance photovoltaic performance of CdSe/CdS quantum dots sensitized solar cells

  • Zhen Li
  • Libo Yu
  • Hai Song
  • Lei Feng
  • Xingpeng Wang
Article

Abstract

TiO2 nanoparticles (NP) at top of TiO2 nanotube (TiO2 NP@TiO2NT) double-layered architecture is constructed to combine the advantages of TiO2 NP and TiO2 NT together. This composite TiO2 NP@TiO2NT architecture as photoanode possesses a larger surface area for more QDs loading, and highly tubular structure for electron swift transport. Based on this architecture, CdSe/CdS quantum dots (QDs) have been successfully synthesized by successive ionic layer adsorption reaction (SILAR) method for quantum dots-sensitized solar cell application. The photovoltaic performance of QDSSCs based on TiO2 NP@TiO2 NT have been investigated in contrast with bare TiO2 NP and bare TiO2 NT architectures with almost the same thickness. The results show that the power conversion efficiency (PCE) of QDSSCs could be enhanced using TiO2 NP@TiO2 NT and improved to 3.26%, which is 80% and 38% higher than QDSSCs based on bare TiO2 NT and bare TiO2 NP, respectively. The BET surface area, UV–vis absorption spectra, and incident photon to current conversion efficiency (IPCE) measurements results show the evidence that the TiO2 NP@TiO2 NT can combine advantages of TiO2 NP and TiO2 NT structures together and lead to a higher light harvesting efficiency, electron collecting efficiency, and efficient electron transport.

Notes

Acknowledgements

This work has been financially supported by the University Research Project of Gansu Province [No. 2017A-089, 2018A-091], the Surface Project of Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province [No. XZ1604], and the Hexi University Principle Fund of Scientific Innovation and Application [No. XZ2017010].

Supplementary material

10854_2018_9915_MOESM1_ESM.docx (941 kb)
Supplementary material 1 (DOCX 940 KB)

References

  1. 1.
    J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.J. Wan, J. Am. Chem. Soc. 138, 4201 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Adv. Mater. 30, 1705746 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, J. Phys. Chem. Lett. 8, 559 (2017)CrossRefGoogle Scholar
  4. 4.
    P.V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Badawi, Superlattices Microstruct. 90, 124 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Sun, H. Cuo, L. Zhao, S. Wang, J. Hu, B. Dong, Int. J. Electrom. Sci. 12, 7941 (2017)CrossRefGoogle Scholar
  7. 7.
    H.K. Jun, M.A. Careem, A.K. Arof, Renew. Sustain. Energ. Rev. 22, 148 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Grätzel, Nature. 414, 338 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Ruhle, M. Shalom, A. Zaban, ChemPhysChem 11, 2290 (2010)CrossRefGoogle Scholar
  10. 10.
    D.-W. Jeong, J.-Y. Kim, H.W. Seo, K.-M. Lim, M.J. Ko, T.-Y. Seong, B.S. Kim, Appl. Surf. Sci. 429, 16 (2018)CrossRefGoogle Scholar
  11. 11.
    P.V. Kamat, Acc. Chem. Res. 45, 1906 (2012)CrossRefGoogle Scholar
  12. 12.
    D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805 (2009)CrossRefGoogle Scholar
  13. 13.
    J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 5, 5750 (2012)CrossRefGoogle Scholar
  14. 14.
    W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, J. Am. Chem. Soc. 130, 1124 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Zhou, Q. Zhang, E. Uchaker, J. Lan, M. Yin, G. Cao, J. Mater. Chem. A. 2, 2517 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Shen, Z. Du, Z. Pan, J. Du, X. Zhong, ACS Omega 3, 1102 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology. 29, 014002 (2018)CrossRefGoogle Scholar
  18. 18.
    X. Hu, Y. Li, J. Tian, H. Yang, H. Cui, J. Ind. Eng. Chem. 45, 189 (2017)CrossRefGoogle Scholar
  19. 19.
    N. Buatong, I. Tang, W. Pon-On, Mater. Lett. 199, 41 (2017)CrossRefGoogle Scholar
  20. 20.
    T.S. Bhat, S.S. Mali, A.D. Sheikh, S.D. Korade, K.K. Pawar, C.K. Hong, J.H. Kim, P.S. Patil, Opt. Mater. 73, 781 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Cheng, W. Fu, H. Yang, L. Zhang, J. Ma, H. Zhao, M. Sun, L. Yang, J. Phys. Chem. C 116, 2615 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Guo, M. Li, X. Fang, L. Bai, M. Luoshan, F. Zhang, X. Zhao, J. Power Sources. 264, 35 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Appl. Surf. Sci. 309, 255 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Li, L. Yu, Y. Liu, S. Sun, J. Mater. Sci. Mater. Electron. 26, 1625 (2015)CrossRefGoogle Scholar
  26. 26.
    G. Veerappan, K. Zhang, S. Soman, N. Heo, J.H. Park, Sol. Energy 157, 434 (2017)CrossRefGoogle Scholar
  27. 27.
    U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Nanotechnology. 28, 274001 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Chen, F. Li, G. Li, F. Tan, S. Li, L. Ling, J. Mater. Sci. 49, 1868 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Ren, L. Yu, Z. Li, H. Song, Q. Wang, Superlattices Microstruct. 113, 696 (2018)CrossRefGoogle Scholar
  30. 30.
    X. Deng, Y. Wang, Z. Cui, L. Li, C. Shi, Superlattices Microstruct. 117, 283 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Liu, K. Lan, A.A. Bagabas, P. Zhang, W. Gao, J. Wang, Z. Sun, J. Fan, A.A. Elzatahry, D. Zhao, Small. 12, 860 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Wang, J. Wang, H. Wang, J. Nanopart. Res. 16, 2458 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, Y.-B. Cheng, Adv. Funct. Mater. 20, 1301 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Li, L. Yu, Y. Liu, S. Sun, Electrochim. Acta 129, 379 (2014)CrossRefGoogle Scholar
  35. 35.
    Q. Chen, D. Xu, J. Phys. Chem. C 113, 6310 (2009)CrossRefGoogle Scholar
  36. 36.
    S.S. Kalanur, S.Y. Chae, O.S. Joo, Electrochim. Acta 103, 91 (2013)CrossRefGoogle Scholar
  37. 37.
    Y. Choi, M. Seol, W. Kim, K. Yong, J. Phys. Chem. C 118, 5664 (2014)CrossRefGoogle Scholar
  38. 38.
    A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem. 4, 859 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringHexi UniversityZhangye CityPeople’s Republic of China
  2. 2.Key Laboratory of Hexi Corridor Resources Utilization of GansuHexi UniversityZhangye CityPeople’s Republic of China

Personalised recommendations