Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18036–18044 | Cite as

Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system

  • Querui Hu
  • Yiping Wang
  • Lei Wu
  • Jiang Yin
  • Lang Chen
  • Guoliang Yuan
  • Ying Yang


Piezoelectric ceramics xLiNbO3yBiScO3–(1−xy)PbTiO3 (LN–BS–PT, 0.00 ≤ x ≤ 0.10, 0.30 ≤ y ≤ 0.36) were synthesized and their phase diagram and morphotropic phase boundary between rhombohedral and tetragonal phases have been confirmed. The optimal properties were found at the composition of 0.03LN–0.36BS–0.61PT with piezoelectric coefficient d33* value of 702 pm/V, d33 of 551 pC/N, planar electromechanical coupling factor kp of 0.51, remnant polarization Pr of 46.5 µC/cm2, Curie temperature Tc of 337 °C, and a large strain of 0.351% at an electric field of 50 kV/cm and frequency of 2 Hz with a low strain hysteresis of 5.9%. The Curie temperature of the ternary system presents a linear relationship with LiNbO3 and BiScO3 contents. The optimization of these electric properties was probably ascribed to the enhancement in domain walls and the improving mobility of domain switching due to LiNbO3 doping.



This work was financially supported by the 111 project (No. B12021), the National Natural Science Foundation of China (No. 51372111), the Science and Technology Research Items of Shenzhen (JCYJ20170412153325679), the Hong Kong, Macao and Taiwan Science and Technology Cooperation Program of China (2015DFH10200), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

10854_2018_9898_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1217 KB)


  1. 1.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954)CrossRefGoogle Scholar
  2. 2.
    S.W. Choi, T.R. Shrout, S.J. Jang, A.S. Bhalla, Mater. Lett. 8, 253 (1989)CrossRefGoogle Scholar
  3. 3.
    J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982)CrossRefGoogle Scholar
  4. 4.
    H.Q. Fan, H.E. Kim, J. Appl. Phys. 91, 317 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Hosono, Y. Yamashita, H. Sakamoto, N. Ichinose, Jpn. J. Appl. Phys. 42, 5681 (2003)CrossRefGoogle Scholar
  6. 6.
    H.J. Lee, S. Zhang, J. Luo, F. Li, T.R. Shrout, Adv. Funct. Mater. 20, 3154 (2010)CrossRefGoogle Scholar
  7. 7.
    I.T. Seo, T.G. Lee, D.H. Kim, J. Hur, J.H. Kim, S. Nahm, J. Ryu, B.Y. Choi, Sens. Actuators A 238, 71 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Tang, M.F. Zhang, S.J. Zhang, Y.J. Feng, F. Li, T.R. Shrout, J. Eur. Ceram. Soc. 33, 2491 (2013)CrossRefGoogle Scholar
  9. 9.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, Jpn. J. Appl. Phys. 40, 5999 (2001)CrossRefGoogle Scholar
  10. 10.
    S.J. Zhang, C. Stringer, R. Xia, S.M. Choi, C.A. Randall, T.R. Shrout, J. Appl. Phys. 98, 034103 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Sehirlioglu, A. Sayir, F. Dynys, J. Am. Ceram. Soc. 93, 1718 (2010)Google Scholar
  12. 12.
    T. Sebastian, I. Sterianou, I.M. Reaney, T. Leist, W. Jo, J. Rödel, J. Electroceram. 28, 95 (2012)CrossRefGoogle Scholar
  13. 13.
    I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, J. Appl. Phys. 98, 094111 (2005)CrossRefGoogle Scholar
  14. 14.
    C.B. Long, H.Q. Fan, P.R. Ren, Inorg. Chem. 52, 5045 (2013)CrossRefGoogle Scholar
  15. 15.
    L.J. Liu, H.Q. Fan, S.M. Ke, X.L. Chen, J. Alloys Compd. 458, 504 (2008)CrossRefGoogle Scholar
  16. 16.
    J.G. Wu, Y. Yu, X.T. Li, X.Y. Gao, S.X. Dong, S. Zhang, J. Am. Ceram. Soc. 98, 3145 (2015)CrossRefGoogle Scholar
  17. 17.
    J.G. Chen, G.X. Jin, C.M. Wang, J.R. Cheng, D. Damjanovic, J. Am. Ceram. Soc. 97, 3890 (2014)CrossRefGoogle Scholar
  18. 18.
    S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86, 262904 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Ryu, S. Priya, C. Sakaki, K. Uchino, Jpn. J. Appl. Phys. 41, 6040 (2002)CrossRefGoogle Scholar
  20. 20.
    J. Shi, H.Q. Fan, X. Liu, Q. Li, J. Eur. Ceram. Soc. 34, 3675 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Sehirlioglu, A. Sayir, F. Dynys, J. Appl. Phys. 106, 014102 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Chen, Y.P. Wang, Y.T. Zhang, Y. Yang, R.Y. Jin, J. Eur. Ceram. Soc. 37, 2365 (2017)CrossRefGoogle Scholar
  23. 23.
    J.G. Hao, W.F. Bai, W. Li, B. Shen, J.W. Zhai, J. Appl. Phys. 114, 044103 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Wu, B. Shen, Q.R. Hu, J. Chen, Y.P. Wang, Y.D. Xia, J. Yin, J. Am. Ceram. Soc. 100, 4670 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.J. Dai, S.J. Zhang, T.R. Shrout, X.W. Zhang, J. Am. Ceram. Soc. 93, 1108 (2010)CrossRefGoogle Scholar
  26. 26.
    J.U. Rahman, A. Hussain, A. Maqbool, R.A. Malik, T.K. Song, M.H. Kim, S. Lee, W.J. Kim, J. Korean Phys. Soc. 67, 1240 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, J.G. Zhu, D.Q. Xiao, B.Q. Qin, Y.H. Jiang, J. Alloys Compd. 470, 420 (2009)CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, Z.R. Li, L.H. Li, Z. Xu, X. Yao, J. Mater. Sci. Mater. Electron. 22, 1490 (2011)CrossRefGoogle Scholar
  29. 29.
    Q. Zhang, Z.R. Li, N. Zhang, Z. Xu, J. Mater. Sci. 47, 696 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Cochard, F. Karolak, C. Bogicevic, O. Guedes, P.E. Janolin, Adv. Mater. Sci. Eng. 2015, 1 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Feng, Z.G. Ye, J. Solid State Chem. 163, 484 (2002)CrossRefGoogle Scholar
  32. 32.
    G. Arlt, J. Mater. Sci. 25, 2655 (1990)CrossRefGoogle Scholar
  33. 33.
    Y.K. Yan, Y. Zhou, S. Gupta, S. Priya, Appl. Phys. Lett. 103(8), 082906 (2013)CrossRefGoogle Scholar
  34. 34.
    D. Maurya, Y. Zhou, Y.K. Yan, S. Priya, J. Mater. Chem. C 1, 2102 (2013)CrossRefGoogle Scholar
  35. 35.
    H. Tang, S.J. Zhang, Y.J. Feng, F. Li, T.R. Shrout, D. Johnson, J. Am. Ceram. Soc. 96, 2857 (2013)CrossRefGoogle Scholar
  36. 36.
    Y.F. Chang, Y. Sun, J. Wu, X.H. Wang, S.T. Zhang, B. Yang, G.L. Messing, W.W. Cao, J. Eur. Ceram. Soc. 36, 1973 (2016)CrossRefGoogle Scholar
  37. 37.
    E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Appl. Phys. Lett. 78, 2551 (2001)CrossRefGoogle Scholar
  38. 38.
    W.F. Bai, D.Q. Chen, P. Zheng, J.H. Xi, Y. Zhou, B. Shen, J.W. Zhai, Z.G. Ji, J. Eur. Ceram. Soc. 37, 2591 (2017)CrossRefGoogle Scholar
  39. 39.
    Y.K. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 1784 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Chen, X.L. Dong, H. Yang, R.H. Liang, C.L. Mao, J. Am. Ceram. Soc. 90, 477 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Querui Hu
    • 1
    • 2
  • Yiping Wang
    • 1
  • Lei Wu
    • 3
  • Jiang Yin
    • 3
  • Lang Chen
    • 4
  • Guoliang Yuan
    • 5
  • Ying Yang
    • 1
  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  3. 3.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  4. 4.Department of PhysicsSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  5. 5.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations