Advertisement

Humidity-related failures in electronics: effect of binary mixtures of weak organic acid activators

  • Kamila Piotrowska
  • Vadimas Verdingovas
  • Rajan Ambat
Article
  • 39 Downloads

Abstract

The ionic residues of activator compounds used in the no-clean solder flux systems often remain on a Printed Circuit Board Assembly surface after the soldering process and may compromise the corrosion reliability of electronic device upon exposure to humid environment. The solder flux formulations contain weak organic acids (WOAs) activators of different types, sometimes present in the form of mixtures of varying compositions. This paper presents the results of parametric hygroscopicity studies of binary mixtures of weak organic acids that simulate the activating part of the typical no-clean solder flux formulation. Three types of binary blends of varying ratios between the acids were tested: adipic:succinic, adipic:glutaric, and succinic:glutaric. The hygroscopic and corrosive behaviour of the mixtures were investigated under relative humidity (RH) varying from 30 to ~ 99% and at test temperatures of 25 °C, 40 °C, and 60 °C. The moisture sorption and desorption isotherms were determined using a gravimetric method, while AC electrochemical impedance was employed for monitoring the solid–liquid transition of residues. The influence of residues on corrosion reliability was investigated using DC leakage current measurements on a contaminated surface insulation resistance comb patterns with tin solder alloy. The results of corrosion testing were correlated with hygroscopicity studies and visualized by ex-situ colorimetric analysis using a tin ion indicator in a gel. The results show that the critical humidity level for moisture absorption shifts to lower RH values for mixtures, compared to pure WOAs. Water absorption behaviour varied based on the relative content of WOAs in the mixtures and ambient temperature, which also influenced the leak currents and electrochemical migration.

Notes

Acknowledgements

The research reported here was conducted as part of the CELCORR/CreCon consortium (http://www.celcorr.com) and supported by the Innovation Fund Denmark through the IN SPE project. The authors would like to acknowledge the industrial partners for funding support, their help and commitment received during the program run.

References

  1. 1.
    J.A. Jachim, G.B. Freeman, L.J. Turbini, IEEE Trans. Compon. Packag. Manuf. Technol. B 20, 443 (1997)CrossRefGoogle Scholar
  2. 2.
    J.F. Shipley, Weld. J. 54, S357–S362 (1975)Google Scholar
  3. 3.
    V. Verdingovas, M.S. Jellesen, R. Ambat, Solder. Surf. Mt. Technol. 27, 146 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Conseil, V. Verdingovas, M.S. Jellesen, R. Ambat, J. Mater. Sci. 27, 23 (2016)Google Scholar
  5. 5.
    M. Nasta, H.C. Peebles, Circ. World 21, 10 (1995)CrossRefGoogle Scholar
  6. 6.
    K. Piotrowska, M.S. Jellesen, R. Ambat, Solder. Surf. Mt. Technol. 29, 133 (2017)CrossRefGoogle Scholar
  7. 7.
    V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)CrossRefGoogle Scholar
  8. 8.
    J.H. Lau, Solder Joint Reliability: Theory and Applications, (Springer, New York, 1991)CrossRefGoogle Scholar
  9. 9.
    H. Schimanski, O. Yezerska, P. Plagemann, J. Hagge, Proc. Eur. Corros. Congr. EUROCORR 2016, 1 (2016)Google Scholar
  10. 10.
    K. Piotrowska, H. Conseil, M.S. Jellesen, R. Ambat, Proc. Eur. Corros. Congr. EUROCORR 2014, 1 (2014)Google Scholar
  11. 11.
    C. Dominkovics, G. Harsányi, in 29th Int. Spring Semin. Electron. Technol. Nano Technol. Electron. Packag., 206 (2007)Google Scholar
  12. 12.
    U. Rathinavelu, M.S. Jellesen, P. Møller, R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 719 (2012)CrossRefGoogle Scholar
  13. 13.
    M.S. Jellesen, D. Minzari, U. Rathinavelu, P. Møller, R. Ambat, Eng. Fail. Anal. 17, 1263 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Michalkiewicz, S.M.T. Surf, Mt. Technol. Mag. 29, 20 (2014)Google Scholar
  15. 15.
    K.S. Hansen, M.S. Jellesen, P. Møller, P.J.S. Westermann, R. Ambat, Annu. Reliab. Maintainab. Symp. RAMS 2009, (2009)Google Scholar
  16. 16.
    M.S. Jellesen, M. Dutta, V. Verdingovas, R. Ambat, Proc. Imaps Nord. Annu. Conf. Proc. 2012, 104 (2012)Google Scholar
  17. 17.
    K. Piotrowska, R. Ud Din, M.S. Jellesen, R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. (2018)  https://doi.org/10.1109/TCPMT.2018.2792047 CrossRefGoogle Scholar
  18. 18.
    G.W. Warren, P. Wynblatt, M. Zamanzadeh, J. Electron. Mater. 18, 339 (1989)CrossRefGoogle Scholar
  19. 19.
    K.M. Adams, J.E. Anderson, Y.B. Graves, Circ. World 20, 41 (1994)CrossRefGoogle Scholar
  20. 20.
    K. Piotrowska, R.U. Din, F.B. Grumsen, M.S. Jellesen, R. Ambat, J. Electron. Mater. 47, 4190 (2018)CrossRefGoogle Scholar
  21. 21.
    C. Peng, M.N. Chan, C.K. Chan, Environ. Sci. Technol. 35, 4495 (2001)CrossRefGoogle Scholar
  22. 22.
    P.A. Thiel, T.E. Madey, Surf. Sci. Rep. 7, 211 (1987)CrossRefGoogle Scholar
  23. 23.
    L.J. Mauer, L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 41 (2010)CrossRefGoogle Scholar
  24. 24.
    L.J. Mauer, M. Allan, Manuf. Conf. 95, 73 (2015)Google Scholar
  25. 25.
    M.C. Foster, G.E. Ewing, J. Chem. Phys. 112, 6817 (2000)CrossRefGoogle Scholar
  26. 26.
    A.N. Hiatt, M.G. Ferruzzi, L.S. Taylor, L.J. Mauer, J. Agric. Food Chem. 56, 6471 (2008)CrossRefGoogle Scholar
  27. 27.
    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Food Bioprod. Process. 80, 118 (2002)CrossRefGoogle Scholar
  28. 28.
    N. Tang, H.R. Munkelwitz, J. Appl. Meteorol. 33, 791 (1994)CrossRefGoogle Scholar
  29. 29.
    G. Zografi, B. Hancock, Top. Pharm. Sci. 1993, 405 (1994)Google Scholar
  30. 30.
    S.D. Brooks, M.E. Wise, M. Cushing, M.A. Tolbert, Geophys. Res. Lett. 29, 23 (2002)CrossRefGoogle Scholar
  31. 31.
    L. Zou, C. Hunt, Solder. Surf. Mt. Technol. 11, 30 (1999)CrossRefGoogle Scholar
  32. 32.
    J.E. Sohn, U. Ray, Circ. World 21, 22 (1995)CrossRefGoogle Scholar
  33. 33.
    L.J. Turbini, J.A. Jachim, G.B. Freeman, J.F. Lane, Thirteen. IEEE/CHMT Int. Electron. Manuf. Technol. Symp. 80 (1992)Google Scholar
  34. 34.
    V. Verdingovas, M.S. Jellesen, R. Ambat, Microelectron. Reliab. 73, 158 (2017)CrossRefGoogle Scholar
  35. 35.
    J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Technomic Pub, Lancaster, 1993)Google Scholar
  36. 36.
    L. Ma, B. Sood, M. Pecht, IEEE Trans. Dev. Mater. Reliab. 11, 66 (2011)CrossRefGoogle Scholar
  37. 37.
    L. D’Angelo, V. Verdingovas, L. Ferrero, E. Bolzacchini, R. Ambat, IEEE Trans. Dev. Mater. Rel. 17, 746 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Zhan, M.H. Azarian, M.G. Pecht, IEEE Trans. Electron. Packag. Manuf. 29, 217 (2006)CrossRefGoogle Scholar
  39. 39.
    J.D. Sinclair, J. Electrochem. Soc. 135, C89 (1988)CrossRefGoogle Scholar
  40. 40.
    S. Canumalla, K. Ludwig, R. Pedigo, T. Fitzgerald, Proc. Electron. Compon. Technol. Conf. 625 (2006)Google Scholar
  41. 41.
    B.A. Smith, L.J. Turbini, J. Electron. Mater. 28, 1299 (1999)CrossRefGoogle Scholar
  42. 42.
    C.W. Harmon, R.L. Grimm, T.M. McIntire, M.D. Peterson, B. Njegic, V.M. Angel, A. Alshawa, J.S. Underwood, D.J. Tobias, R.B. Gerber, M.S. Gordon, J.C. Hemminger, S.A. Nizkorodov, J. Phys. Chem. B 114, 2435 (2010)CrossRefGoogle Scholar
  43. 43.
    F.D. Pope, B.J. Dennis-Smither, P.T. Griffiths, S.L. Clegg, R.A. Cox, J. Phys. Chem. A 114, 5335 (2010)CrossRefGoogle Scholar
  44. 44.
    J.G. Kapsalis, in Water Activity: Theory and Applications to Food, ed. by L.R. Beuchat (Marcel Dekker Inc, New York, 1987), p. 173Google Scholar
  45. 45.
    R.D. Andrade, R. Lemus, C.E. Perez, Vitae-Rev. La Fac. Quim. Farm. 18, 324 (2011)Google Scholar
  46. 46.
    M.C. Allan, MSc Thesis (2014)Google Scholar
  47. 47.
    L.J. Mauer, L.S. Taylor, Pharm. Dev. Technol. 15, 582 (2010)CrossRefGoogle Scholar
  48. 48.
    A.K. Salameh, L.J. Mauer, L.S. Taylor, J. Food Sci. 71, E10 (2006)CrossRefGoogle Scholar
  49. 49.
    M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, L. Metlas-Komunjer, J. Food Eng. 115, 391 (2013)CrossRefGoogle Scholar
  50. 50.
    A.K. Salameh, L.S. Taylor, Pharm. Dev. Technol. 11, 453 (2006)CrossRefGoogle Scholar
  51. 51.
    K. Kwok, L.J. Mauer, L.S. Taylor, J. Agric. Food Chem. 58, 11716 (2010)CrossRefGoogle Scholar
  52. 52.
    A.K. Salameh, L.S. Taylor, J. Phys. Chem. B 110, 10190 (2006)CrossRefGoogle Scholar
  53. 53.
    K.D. Ross, Food Technol. 29, 26 (1975)Google Scholar
  54. 54.
    R.A. Lipasek, N. Li, S.J. Schmidt, L.S. Taylor, L.J. Mauer, J. Agric. Food Chem. 61, 9241 (2013)CrossRefGoogle Scholar
  55. 55.
    M.J. Kontny, G. Zografi, J. Pharm. Sci. 74, 124 (1985)CrossRefGoogle Scholar
  56. 56.
    C. Marcolli, B. Luo, T. Peter, J. Phys. Chem. A 108, 2216 (2004)CrossRefGoogle Scholar
  57. 57.
    M. Kuwata, W. Shao, R. Lebouteiller, S.T. Martin, Atmos. Chem. Phys. 13, 5309 (2013)CrossRefGoogle Scholar
  58. 58.
    M.N. Chan, S.M. Kreidenweis, C.K. Chan, Environ. Sci. Technol. 42, 3602 (2008)CrossRefGoogle Scholar
  59. 59.
    M.T. Parsons, J. Geophys. Res. 109, 1 (2004)CrossRefGoogle Scholar
  60. 60.
    P. Saxena, L.M. Hildemann, Environ. Sci. Technol. 31, 3318 (1997)CrossRefGoogle Scholar
  61. 61.
    R. Zamora, A. Tabazadeh, D.M. Golden, M.Z. Jacobson, J. Geophys. Res. Atmos. 116, D23207 (2011)Google Scholar
  62. 62.
    M.E. Wise, J.D. Surratt, D.B. Curtis, J.E. Shilling, M.A. Tolbert, J. Geophys. Res. 108, AAC4 (2003)Google Scholar
  63. 63.
    S.L. Clegg, J.H. Seinfeld, J. Phys. Chem. A 110, 5718 (2006)CrossRefGoogle Scholar
  64. 64.
    C.N. Cruz, S.N. Pandis, Environ. Sci. Technol. 34, 4313 (2000)CrossRefGoogle Scholar
  65. 65.
    L. Treuel, S. Pederzani, R. Zellner, Phys. Chem. Chem. Phys. 11, 7976 (2009)CrossRefGoogle Scholar
  66. 66.
    M. Song, C. Marcolli, U.K. Krieger, A. Zuend, T. Peter, Atmos. Chem. Phys. Discuss. 11, 29141 (2011)CrossRefGoogle Scholar
  67. 67.
    L. Treuel, S. Schulze, T. Leisner, R. Zellner, Faraday Discuss. 137, 265 (2008)CrossRefGoogle Scholar
  68. 68.
    A. Apelblat, M. Dov, J. Wisniak, J. Zabicky, J. Chem. Thermodyn. 27, 35 (1994)CrossRefGoogle Scholar
  69. 69.
    M. Allan, L.S. Taylor, L.J. Mauer, Food Chem. 195, 2 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Materials and Surface EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations