Hydrothermal-photoreduction synthesis of novel Ag@AgBr/BiVO4 plasmonic heterojunction photocatalysts with enhanced activity under white light emitting diode (wLED) irradiation

  • Yongfeng Cai
  • Shiyan Chang
  • Yunfeng Liu
  • Yi ShenEmail author
  • Fengfeng LiEmail author
  • Liangyu Li
  • Shuangshuang Zhu
  • Xiaoyi Zheng


Plasmonic heterojunction photocatalysts consisting of silver covered AgBr/BiVO4 structures (Ag@AgBr/BiVO4) were prepared by hydrothermal-photoreduction method. Their phase composition and microstructure were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron and transmission electron microscopies. The photo-generated electron–hole pair recombination rate was characterized by I–t curves and photoluminescence measurements. Visible light absorption range of Ag@AgBr/BiVO4 plasmonic heterojunction was significantly enhanced. Ag@AgBr/BiVO4 showed high efficiency for degradation of rhodamine B (RhB) under wLED light. RhB degraded by ~ 82% during 150 min reaction time. Ag@AgBr/BiVO4 photocatalyst remained constant after 8 cycles indicating its extreme stability. Enhancement mechanism of Ag@AgBr/BiVO4 plasmonic heterojunction photocatalyst is discussed.



This work is supported by the National Science Foundation Project of China (Grant Nos. 51772099, 51572069); North China University of Science and Technology Graduate Innovation Project (No. 2018S06); The authors would like to thank shiyanjia lab for the support of HRTEM test.


  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    A. Kudo, K. Ueda, H. Kato, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998)CrossRefGoogle Scholar
  3. 3.
    R. Sharma, S. Singh, A. Verma, Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. J. Phtotochem. Photobiol. B 162, 266–272 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Feng, H. Cheng, J. Han, Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion. Chin. Chem. Lett. 28, 2254–2258 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Lu, H. Shang, H. Guan, Enhanced visible-light photocatalytic activity of BiVO4 microstructures via annealing process. Superlattice Microstruct. 88, 591–599 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Ravidhas, A.J. Josephine, P. Sudhagar, Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: structural, optical and photocatalytic properties. Mater. Sci. Semicond. Process. 30, 343–351 (2015)CrossRefGoogle Scholar
  7. 7.
    I. Khan, S. Ali, M. Mansha, Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrason. Sonochem. 36, 386–392 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Liu, H. Tang, H. Zhou, Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis. Appl. Surf. Sci. 391, 542–547 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Kumari, S.B. Krupanidhi, K.B.R. Varma, Dielectric, impedance and ferroelectric characteristics of c-oriented bismuth vanadate films grown by pulsed laser deposition. Mater. Sci. Eng. B 138, 22–30 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Shi, Y. Hu, L. Zhang, Palygorskite supported BiVO4 photocatalyst for tetracycline hydrochloride removal. Appl. Clay Sci. 137, 249–258 (2016)CrossRefGoogle Scholar
  11. 11.
    O. Monfort, D. Raptis, L. Satrapinskyy, Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochim. Acta 251, 244–249 (2017)CrossRefGoogle Scholar
  12. 12.
    N. Bao, Z. Yin, Q. Zhang, Synthesis of flower-like monoclinic BiVO4/surface rough TiO2 ceramic fiber with heterostructures and its photocatalytic property. Ceram. Int. 42, 1791–1800 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Tong, X. Wang, X. Zhou, Cobalt-phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. Int. J. Hydrog. Energy 42, 5496–5504 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, X. Zhang, D. Wang, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. Appl. Surf. Sci. 403, 389–395 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, W. Li, Z. Sun, In-situ synthesis of heterostructured BiVO4/BiOBr core-shell hierarchical mesoporous spindles with highly enhanced visible-light photocatalytic performance. J. Alloy. Compd. 713, 78–86 (2017)CrossRefGoogle Scholar
  16. 16.
    Z. Xiang, Y. Wang, D. Zhang, BiOI/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Ind. Eng. Chem. 40, 83–92 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Cheng, X. Yan, Q. Mo, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 43, 301–307 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Zhao, J. Yan, H. Jia, BiVO4/g-C3N4 composite visible-light photocatalyst for effective elimination of aqueous organic pollutants. J. Mol. Catal. A-Chem. 424, 162–170 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Ou, Q. Zhong, S. Zhang, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloy. Compd. 626, 401–409 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Li, M. Cui, Z. Guo, Preparation of p–n junction BiVO4/Ag2O heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Mater. Lett. 151, 75–78 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Qiu, B. Park, J. Choi, BiVO4/Bi2O3 heterojunction deposited on graphene for an enhanced visible-light photocatalytic activity. J. Alloy. Compd. 706, 7–15 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Malathi, V. Vasanthakumar, P. Arunachalam, A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible-light induced photocatalytic activity. J. Colloid Interface Sci. 506, 553 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Jiang, M. Wang, R. Li, Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications. Int. J. Hydrog. Energy 38, 13069–13076 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Zhou, J. Fan, Q. Xu, BiVO4 Nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl. Catal. B-Environ. 201, 77–83 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Min, F. Wang, Z. Jin, Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattice Microstruct. 74, 294–307 (2014)CrossRefGoogle Scholar
  26. 26.
    W. Wang, X. Huang, S. Wu, Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B-Environ. 134, 293–301 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Xia, J. Bai, J. Li, High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Appl. Catal. B-Environ. 204, 127–133 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Zhai, Y. Yin, X. Liu, Novel magnetically separable BiVO4/Fe3O4 Photocatalyst: Synthesis and Photocatalytic Performance under Visible-light Irradiation. Mater. Res. Bull. 89, 297–306 (2017)CrossRefGoogle Scholar
  29. 29.
    W. Zhong, W. Tu, Y. Xu, Conductive FeSe nanorods: a novel and efficientco-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light. J. Environ. Chem. Eng. 5, 4206–4211 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Li, W. Zhao, Y. Guo, Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci. 351, 270–279 (2015)CrossRefGoogle Scholar
  31. 31.
    U. Lamdab, K. Wetchakun, S. Phanichphant, InVO4–BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue. Catal. Today 278, 291–302 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Li, L. Meng, F. Wang, Room temperature aqueous synthesis of BiVO/NaBiO3 heterojunction with high efficiency for sulfadiazine removal. Catal. Commun. 86, 51–54 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Li, F. Wang, L. Meng, Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. J. Colloid Interface Sci. 485, 116–122 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, L. Yang, D. Zhang, Novel bifunctional V2O5/BiVO4 nanocomposite materials with enhanced antibacterial activity. J. Taiwan Inst. Chem. Eng. 68, 387–395 (2016)CrossRefGoogle Scholar
  35. 35.
    T. Stoll, G. Zafeiropoulos, I. Dogan, Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes. Electrochem. Commun. 82, 47–51 (2017)CrossRefGoogle Scholar
  36. 36.
    A.A.M. Ibrahim, I. Khan, N. Iqbal, Facile synthesis of tungsten oxide–Bismuth vanadate nanoflakes as photoanode material for solar water splitting. Int. J. Hydrog. Energy 42, 3423–3430 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Yang, J. Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy 32, 232–240 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Hu, J. Fan, C. Pu, Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. J. Phtotochem. Photobiol. A 337, 172–183 (2017)CrossRefGoogle Scholar
  39. 39.
    N.K. Veldurthi, K.R. Eswar, S.A. Singh, Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator. Appl. Catal. B-Environ. 220, 512–523 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Trzciński, M. Szkoda, M. Sawczak, Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Appl. Surf. Sci. 385, 199–208 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Zhou, R. Tang, L. Zhang, Au nanoparticles coupled three-dimensional macroporous BiVO4/SnO2 inverse opal heterostructure for efficient photoelectrochemical water splitting. Electrochim. Acta 248, 77–83 (2017)Google Scholar
  42. 42.
    R. Dong, B. Tian, J. Zhang, AgBr@Ag@TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal. Commun. 38, 16–20 (2013)CrossRefGoogle Scholar
  43. 43.
    H. Cheng, B. Huang, P. Wang, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054–7056 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Zhang, C. Wang, C. Yu, Application of Ag@AgBr/GdVO4 composite photocatalyst in wastewater treatment. J. Environ. Sci. China 63, 68–75 (2017)CrossRefGoogle Scholar
  45. 45.
    D. Jiang, P. Xiao, L. Shao, RGO-promoted all-solid-state g-C3N4/BiVO4 Z-Scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. Ind. Eng. Chem. Res. 56, 8823–8832 (2017)CrossRefGoogle Scholar
  46. 46.
    Y. Liu, J. Kong, J. Yuan, Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J. 40, 10822 (2017)Google Scholar
  47. 47.
    P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26 (2014) 4920–4935CrossRefGoogle Scholar
  48. 48.
    L. Zhang, Y. Shi, L. Wang, AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light. Appl. Catal. B-Environ. 220, 118–125 (2018)CrossRefGoogle Scholar
  49. 49.
    X. Liu, Z. Li, F. Li, Controllable synthesis and characterization of Ag@AgBr core–shell nanowires. Mater. Res. Bull. 47, 1285–1288 (2012)CrossRefGoogle Scholar
  50. 50.
    C. Kong, B. Ma, K. Liu, Templated-synthesis of hierarchical Ag-AgBr hollow cubes with enhanced visible-light-responsive photocatalytic activity. Appl. Surf. Sci. 443, 492–496 (2018)CrossRefGoogle Scholar
  51. 51.
    M. Kannan, P. Muthusamy, U. Venkatachalam, Mycosynthesis, characterization and antibacterial activity of silver nanoparticles (Ag-NPs) from fungus ganoderma lucidum. Cheminform 106, 183–188 (2011)Google Scholar
  52. 52.
    X. Hu, G. Meng, Q. Huang, Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Nanotechnology 23, 385705 (2012)CrossRefGoogle Scholar
  53. 53.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002)CrossRefGoogle Scholar
  54. 54.
    N.M. Correa, Z.A. Hongguang, Z.A. Schelly, Preparation of AgBr quantum dots via of vesicles. J. Am. Chem. Soc. 122, 6432–6434 (2015)CrossRefGoogle Scholar
  55. 55.
    N. Iqbal, I. Khan, Z.H.A. Yamani, A facile one-step strategy for in-situ fabrication of WO3-BiVO4 nanoarrays for solar-driven photoelectrochemical water splitting applications. Sol. Energy 144, 604–611 (2017)CrossRefGoogle Scholar
  56. 56.
    D. Chen, Z. Wang, Y. Du, In situ ionic-liquid-assisted synthesis of plasmonic photocatalyst Ag/AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. Catal. Today 258, 41–48 (2015)CrossRefGoogle Scholar
  57. 57.
    Y. Wu, L. Song, S. Zhang, Sonocatalytic performance of AgBr in the degradation of organic dyes in aqueous solution. Catal. Commun. 37, 14–18 (2013)CrossRefGoogle Scholar
  58. 58.
    L. Shi, L. Liang, J. Ma, Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram. Int. 40, 3495–3502 (2014)CrossRefGoogle Scholar
  59. 59.
    Y. Yang, G. Zhang, Preparation and photocatalytic properties of visible light driven AgAgBr/attapulgite nanocomposite. Appl. Clay Sci. 67–68, 11–17 (2012)CrossRefGoogle Scholar
  60. 60.
    K. Li, J. Xue, Y. Zhang, ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation. Appl Surf Sci 320, 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongfeng Cai
    • 1
  • Shiyan Chang
    • 1
  • Yunfeng Liu
    • 1
  • Yi Shen
    • 1
    Email author
  • Fengfeng Li
    • 1
    Email author
  • Liangyu Li
    • 1
  • Shuangshuang Zhu
    • 1
  • Xiaoyi Zheng
    • 1
  1. 1.Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations