Electrical characteristics of atomic layer deposited AlN on n-InP

  • Hogyoung KimEmail author
  • Nam Do Kim
  • Sang Chul An
  • Byung Joon ChoiEmail author


Atomic layer deposited AlN films on n-InP were electrically characterized. Compared to the sample without AlN, the interface state density obtained from the capacitance–voltage (CV) measurements was found to decrease with a 7.4 nm thick AlN. According to X-ray photoelectron spectroscopy (XPS) measurements, the sample with a 0.7 nm thick AlN showed dominant peaks related with oxygen bonds (Al–O and In–O). For the sample with a 7.4 nm thick AlN, the dominant peak near the AlN/InP interface was associated with Al–O and N–In bonds whereas it was associated with Al–N bonds near the AlN surface. In addition, the strong emission peaks associated with Al–O bonds were observed across the AlN layer, which indicates that some part of AlN layer is composed of Al–O bonds (like Al2O3). The reverse leakage current for the sample with a 7.4 nm thick AlN at high electric field was explained by Poole–Frenkel (PF) emission, connected with nitrogen vacancy (VN) and oxygen substituting for nitrogen (ON) in the AlN layer.



This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030400).


  1. 1.
    J. Wu, J. Appl. Phys. 106, 011101 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Sadeghpour, F. Ceyssens, R. Puers, J. Phys. 757, 012003 (2016)Google Scholar
  3. 3.
    M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, J. Cryst. Growth 335, 51 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Bosund, P. Mattila, A. Aierken, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V. Airaksinen, H. Lipsanen, Appl. Surf. Sci. 256, 7434 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Liu, E. Deguns, L. Lecordier, G. Sundaram, J. Becker, ECS Trans. 41, 219 (2011)CrossRefGoogle Scholar
  6. 6.
    O. Kim, D. Kim, T. Anderson, J. Vac. Sci. Technol. A 27, 923 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Huang, Q. Jiang, S. Yang, Z. Tang, K. Chen, IEEE Electron. Dev. Lett. 34, 193 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Zhao, X. Liu, L. Zhang, H. Huang, J. Shi, P. Wang, Nanoscale Res. Lett. 11, 137 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Cao, X. Cheng, Y. Xie, L. Zheng, Z. Wang, X. Yu, J. Wang, D. Shen, Y. Yu, RSC Adv. 5, 37881 (2015)CrossRefGoogle Scholar
  10. 10.
    P. Mattila, M. Bosund, T. Huhtio, H. Lipsanen, M. Sopanen, J. Appl. Phys. 111, 063511 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Weiland, A. Rumaiz, J. Price, P. Lysaght, J. Woick, J. Appl. Phys. 114, 034107 (2013)CrossRefGoogle Scholar
  12. 12.
    V. Dhaka, A. Perros, S. Naureen, N. Shahid, H. Jiang, J. Kakko, T. Haggren, E. Kauppinen, A. Srinivasan, H. Lipsanen, AIP Adv. 6, 015016 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Saito, T. Ono, M. Shimada, M. Shigekawa, T. Enoki, Jpn. J. Appl. Phys. 44, 334 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Kim, M. Kim, H. Yun, S. Ryu, B. Choi, Ceram. Int. (in press)Google Scholar
  15. 15.
    H. Kim, M. Kim, S. Yoon, B. Choi, Semicond. Sci. Technol. 32, 025011 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Seitsonen, R. Virkkunen, M. Puska, R. Nieminen, Phys. Rev. B 49, 5253 (1994)CrossRefGoogle Scholar
  17. 17.
    H. Hasegawa, T. Sato, T. Hashizume, J. Vac. Sci. Technol. B 15, 1227 (1997)CrossRefGoogle Scholar
  18. 18.
    Y. Luo, J. Kerr, Bond dissociation energies (CRC Handbook of Chemistry and Physics, 89, 2012)Google Scholar
  19. 19.
    R. Tung, Mater. Sci. Eng. R 35, 1 (2001)CrossRefGoogle Scholar
  20. 20.
    T. Mandel, M. Frischolz, R. Helbig, S. Birkle, A. Hammerschimdt, Appl. Surf. Sci. 65–66, 795 (1993)CrossRefGoogle Scholar
  21. 21.
    C. Cheng, G. Apostolopoulos, E. Fitzgerald, J. Appl. Phys. 109, 023714 (2011)CrossRefGoogle Scholar
  22. 22.
    E. Nicollian, J. Brews, MOS Physics and Technology (Wiley, New York, 1982)Google Scholar
  23. 23.
    S. Berberich, P. Godignon, M. Locatelli, J. Millaan, H. Hartnagel, Solid State Electron. 42, 915 (1998)CrossRefGoogle Scholar
  24. 24.
    H. Harris, N. Biswas, H. Temkin, S. Gangopadhyay, M. Strathman, J. Appl. Phys. 90, 5825 (2001)CrossRefGoogle Scholar
  25. 25.
    T. Hossain, D. Wei, J. Edgar, N. Garces, N. Nepal, J. Hite, M. Mastro, C. Eddy Jr., J. Vac. Sci. Technol. B 33, 061201 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Galatage, H. Dong, D. Zhernokletov, B. Brennan, C. Hinkle, R. Wallace, E. Vogel, Appl. Phys. Lett. 102, 132903 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Rein, M. Hohmann, A. Thgersen, J. Mayandi, A. Holt, A. Klein, E. Monakhov, Appl. Phys. Lett. 102, 021606 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, Phys. Status Solidi A 209, 266 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Kang, M. Reddy, D. Kim, K. Kim, J. Ha, H. Choi, J. Lee, J. Phys. D 46, 155101 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Kim, W. Kim, D. Krishnamurthy, M. Ishimaru, H. Kobayashi, S. Hasegawa, H. Asahi, J. Appl. Phys. 108, 123524 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Murakami, W. Yamaguchi, Sci. Rep. 2, 407 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Liu, C. Hsieh, Y. Wu, Y. Wei, P. Lee, C. Liu, Appl. Phys. Lett. 101, 122107 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Liao, R. Sodhi, T. Coyle, J. Vac. Sci. Technol. A 11, 2681 (1993)CrossRefGoogle Scholar
  34. 34.
    P. Nayak, M. Hedhili, D. Cha, H. Alshareef, Appl. Phys. Lett. 103, 033518 (2013)CrossRefGoogle Scholar
  35. 35.
    P. Motamedi, K. Cadien, Appl. Surf. Sci. 315, 104 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Ťapajna, K. Čičo, J. Kuzmík, D. Pogany, G. Pozzovivo, G. Strasser, J.-F. Carlin, N. Grandjean, K. Fröhlich, Semicond. Sci. Technol. 24, 035008 (2009)CrossRefGoogle Scholar
  37. 37.
    A. Fadjie-Djomkam, S. Ababou-Girard, R. Hiremath, C. Herrier, B. Fabre, F. Solal, C. Godet, J. Appl. Phys. 110, 083708 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Fiorenza, G. Greco, F. Giannazzo, R. Nigro, F. Roccaforte, Appl. Phys. Lett. 101, 172901 (2012)CrossRefGoogle Scholar
  39. 39.
    T. Apostolova, D. Huang, P. Alsing, D. Cardimona, Phys. Rev. A 71, 013810 (2005)CrossRefGoogle Scholar
  40. 40.
    H. Lin, P. Ye, G. Wilk, Appl. Phys. Lett. 87, 182904 (2005)CrossRefGoogle Scholar
  41. 41.
    S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, J. Bartha, Thin Solid Films 425, 216 (2003)CrossRefGoogle Scholar
  42. 42.
    X. Li, M. Van Hove, M. Zhao, B. Bakeroot, S. You, G. Groeseneken, S. Decoutere, IEEE Trans. Electron. Dev. 65, 1721 (2018)CrossRefGoogle Scholar
  43. 43.
    T. Tansley, R. Egan, Phys. Rev. B 45, 10942 (1992)CrossRefGoogle Scholar
  44. 44.
    I. Weinstein, A. Vokhmintsev, D. Spiridonov, Diam. Relat. Mater. 25, 59 (2012)CrossRefGoogle Scholar
  45. 45.
    C. Stampfl, C. van de Walle, Phys. Rev. B 65, 1 (2002)Google Scholar
  46. 46.
    M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, Phys. Status Solidi B 246, 1181 (2009)CrossRefGoogle Scholar
  47. 47.
    C. Wu, A. Kahn, Appl. Phys. Lett. 74, 546 (1999)CrossRefGoogle Scholar
  48. 48.
    M. Gronera, J. Elama, F. Fabreguettea, S. Georgea, Thin Solid Films 413, 186 (2002)CrossRefGoogle Scholar
  49. 49.
    V. Ligatchev, Rusli, Z. Pan, Appl. Phys. Lett. 87, 242903 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Visual OpticsSeoul National University of Science and Technology (Seoultech)SeoulRepublic of Korea
  2. 2.Departmet of Materials Science and EngineeringSeoul National University of Science and Technology (Seoultech)SeoulRepublic of Korea

Personalised recommendations