Advertisement

Flexible graphene supercapacitor based on the PVA electrolyte and BaTiO3/PEDOT:PSS composite separator

  • G. Behzadi Pour
  • L. Fekri Aval
  • M. Mirzaee
Article
  • 123 Downloads

Abstract

In this study, the graphene supercapacitor based on the paper substrate, polyvinyl alcohol electrolyte and BaTiO3/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite separator has been fabricated. The morphology of the separator, electrolyte and electrode surfaces and graphene two-dimensional sheets have been characterized using scanning electron microscopy and transmission electron microscopy. The specific capacitances of the graphene supercapacitor were measured using C–V curves and charge/discharge curves. The specific capacitances of the graphene supercapacitor using C–V curves and charge/discharge curves were 343 F g−1 and 195 F g−1 respectively. The Nyquist curve and Bode curve of the graphene supercapacitor have been measured using the electrochemical impedance spectroscopy analysis. From the Nyquist curve the internal resistance was 42 Ω. The supercapacitor based on the graphene two-dimensional sheets electrode and BaTiO3/PEDOT:PSS composite separator represents a progressive type of supercapacitors with excellent performance.

Notes

Acknowledgements

This research work was supported by the Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.

References

  1. 1.
    W.W. Cai, Y.W. Zhu, X.S. Li, R.D. Piner, R.S. Ruoff, Large area few layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95, 123115–123118 (2009)CrossRefGoogle Scholar
  2. 2.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  4. 4.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  5. 5.
    W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, M.S. Cao, Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100, 109–117 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, K.L. Zhang, B.X. Zhang, C.J. Ma, W.L. Song, Z.L. Hou, M. Chen, Smart mechano-hydro-dielectric coupled hybrid sponges formultifunctional sensors. Sens. Actuators B 270, 239–246 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, X.D. Cheng, W.L. Song, C.J. Ma, X.M. Bian, M. Chen, Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 344, 342–352 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Song, C. Gong, H. Li, X.D. Cheng, M. Chen, X. Yuan, H.S. Chen, Y. Yang, D. Fang, Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9, 36119–36129 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Ciszewski, E. Szatkowska, A. Koszorek, M. Maj, Carbon aerogels modified with graphene nanoparticles oxide, graphene nanoparticles and CNT as symetric supercapacitor electrodes. J. Mater. Sci.: Mater. Electron. 28, 4897–4903 (2017)Google Scholar
  10. 10.
    F. Akbar, M. Kolahdouz, Sh Larimian, B. Radfar, H.H. Radamson, Graphene nanoparticles synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci.: Mater. Electron. 26, 4347–4379 (2015)Google Scholar
  11. 11.
    W. Li, Y. Jun, Yang, The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J. Solid State Electrochem. 18, 1621 (2014)CrossRefGoogle Scholar
  12. 12.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, Two-dimensional gas of massless Dirac fermions in graphene nanoparticles. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Yu, H. Chen, Z. Huang, L. Wang, Fe3O4/functional exfoliation graphene nanoparticles on carbon paper nanocomposites for supercapacitor electrode. Ionics (2017).  https://doi.org/10.1007/s11581-017-2409-y CrossRefGoogle Scholar
  14. 14.
    Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene nanoparticles-based materials in supercapacitors. Small 8, 1805–1834 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Kandasamy, K. Kandasamy, Recent advances in electrochemical performances of graphene nanoparticles composite (graphene nanoparticles-polyaniline/polypyrrole/activated carbon/ carbon nanotube) electrode materials for supercapacitor. Inorg. Organomet. Polym. 28, 559–584 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Aphale, K. Maisuria, M.K. Mahapatra, A. Santiago, P. Singh, P. Patra, Hybrid electrodes by in-situ integration of graphene nanoparticles and carbon-nanotubes in polypyrrole for supercapacitors. Sci. Rep. 5, 1–8 (2015)CrossRefGoogle Scholar
  17. 17.
    Q. Cheng, J. Tang, N. Shinya, L.C. Qin, Polyaniline modified graphene nanoparticles and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sources 241, 423–428 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene nanoparticles–MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene nanoparticles hybrid materials. Nano Res. 4, 729–736 (2011)CrossRefGoogle Scholar
  20. 20.
    R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, High performance supercapacitors using metal oxideanchored graphene nanoparticles nanosheet electrodes. J. Mater. Chem. 21, 16197–16204 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Tayel, M. Soliman, S. Ebrahim, An introduced hybrid graphene nanoparticles/polyaniline composites for improvement of supercapacitor. J. Electron. Mater. 45, 820–828 (2016)CrossRefGoogle Scholar
  22. 22.
    S.N. Bhad, V.S. Sangawar, Synthesis and study of PVA based gel electrolyte. Chem. Sci. Trans. 1, 653–657 (2012)CrossRefGoogle Scholar
  23. 23.
    W.L. Song, X. Li, L.Z. Fan, Biomass derivative/graphene aerogels for binder free supercapacitors. Energy Storage Mater. 3, 113–122 (2016)CrossRefGoogle Scholar
  24. 24.
    W.L. Song, X. Li, L.Z. Fan, A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. ACS Appl. Mater. Interfaces 7, 4257–4264 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Shaohui, Z. Jiwei, W. Jinwen, X. Shuangxi, Z. Wenqin, Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6, 1533–1540 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Liu, J. Zhai, Improving the dielectric constant and energy density of poly (vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylprrolidone. J. Mater. Chem. A 3, 1511–1517 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Liu, J. Wang, B. Shen, J. Zhai, H. Hao, L. Zhao, Poly(vinylidene fluoride) nanocomposites with a small loading of core-shell structured BaTiO3@Al2O3 nanofibers exhibiting high discharged energy density and efficiency. J. Alloys Compd. 696, 136–142 (2017)CrossRefGoogle Scholar
  28. 28.
    T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/ carbon nanotube) electrode materials for supercapacitor. J. Alloys Compd. 695, 193–200 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Gui, W. Chen, Ch Liu, J. Liu, Graphene-like membrane supported MnO2 nanospheres for supercapacitor. J. Mater. Sci.: Mater. Electron. 27, 5121–5127 (2016)Google Scholar
  30. 30.
    Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)CrossRefGoogle Scholar
  31. 31.
    C. Peng, J. Lang, S. Xu, X. Wang, Oxygen-enriched activated carbons from pomelo peelin high energy density supercapacitor. RSC Adv. 4, 54662–54667 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Lai, H. Yang, L. Wang, B. Teh, J. Zhong, Preparation of supercapacitor electrodes through selection of graphene surface functionalities. Am. Chem. Soc. 6, 5941–5951 (2012)Google Scholar
  33. 33.
    G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, Ch Liu, J. Lian, Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8, 452–459 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Fu, Y. Kuang, Z. Huang, X. Wang, Y. Yin, J. Chen, H. Zhou, Supercapacitor based on graphene and ionic liquid electrolyte. J. Solid State Electrochem. 15, 2581–2585 (2011)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, X. Zhang, Y. Li, Z. Liu, Z. Hao, Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J. Mater. Chem. A 1, 6393–6399 (2013)CrossRefGoogle Scholar
  36. 36.
    J.Y. Shieh, S.Y. Tsai, B.Y. Li, H.H. Yu, High-performance flexible supercapacitor based on porous array electrodes. Mater. Chem. Phys. 195, 114–122 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56, 9406–9412 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsEast Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations