Advertisement

Synthesis and study of structural, optical and magnetic properties of BiFeO3–ZnFe2O4 nanocomposites

  • Shahrzad Falahatnezhad
  • Hamed Maleki
Article

Abstract

In this work, structural, optical and magnetic properties of (1 −x )BiFeO3–xZnFe2O4 (BFO–ZFO, x = 0, 0.2, 0.4, 0.6, 0.8 and 1) nanocomposite prepared by sol–gel method were studied. X-ray diffraction (XRD) analysis and Furrier transform infrared spectroscopy were investigated to determine the phase analysis and structural properties. XRD patterns indicated the presence of both BFO and ZFO crystalline phases. The averaged grain size and micro-strain was also determined using Scherrer formula and Williamson–Hall analysis. The agglomerated nature of the particles with continuous grain growth in all directions were found by the analysis of scanning electron microscope micrographs. UV–vis diffuse reflectance spectroscopy spectra showed that the optical band-gap was decreased by increasing zinc ferrite content. Magnetic properties of the samples were examined by vibrating sample magnetometer. The magnetic phase transition from ferromagnetic to paramagnetic order was observed by increasing Zn ferrite content.

References

  1. 1.
    N.A. Hill, J. Phys. Chem. B 104(29), 6694 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299(5613) (2003) 1719CrossRefGoogle Scholar
  3. 3.
    H. Maleki, J. Magn. Magn. Mater. 458, 277 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Maleki, J. Mater. Sci. 29(14), 11862 (2018)Google Scholar
  5. 5.
    D.P. Dutta, B.P. Mandal, M.D. Mukadam, S.M. Yusuf, A.K. Tyagi, Dalton Trans. 43(21), 7838 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442(7104), 759 (2006)CrossRefGoogle Scholar
  7. 7.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103(3), 031101 (2008)CrossRefGoogle Scholar
  8. 8.
    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6(1), 13 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Dong, J.-M. Liu, S.-W. Cheong, Z. Ren, Adv. Phys. 64(5–6), 519 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mater. 7(6), 478 (2008)CrossRefGoogle Scholar
  11. 11.
    G. Lawes, G. Srinivasan, J. Phys. D 44(24), 243001 (2011)CrossRefGoogle Scholar
  12. 12.
    A.D. Sheikh, A. Fawzi, V.L. Mathe, J. Magn. Magn. Mater. 323(6), 740 (2011)CrossRefGoogle Scholar
  13. 13.
    G.A. Smolenskiĭ, I.E. Chupis, Sov. Physics Uspekhi 25(7), 475 (1982)CrossRefGoogle Scholar
  14. 14.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13(10) (1980) 1931Google Scholar
  15. 15.
    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463 (2009)CrossRefGoogle Scholar
  16. 16.
    I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C 15(23), 4835 (1982)CrossRefGoogle Scholar
  17. 17.
    J.M. Caicedo, J.A. Zapata, M.E. Gómez, P. Prieto, J. Appl. Phys. 103(7), 07E306 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Maleki, M. Haselpour, R. Fathi, J. Mater. Sci. 29(5), 4320 (2018)Google Scholar
  19. 19.
    H. Maleki, S. Zare, R. Fathi, J. Supercond. Novel Magn. 31(8), 1 (2017)Google Scholar
  20. 20.
    H. Maleki, S. Falahatnezhad, M. Taraz, J Supercond. Nov. Magn. 1(2), (2018) 277Google Scholar
  21. 21.
    H. Singh, K.L. Yadav, J. Phys 23(38), 385901 (2011)Google Scholar
  22. 22.
    P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Ceram. Int. 42(11), 12838 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M.A. Bake, L. Zheng, J. Wang, H. Qian, R. Wu, K. Ibrahim, J. Alloy. Compd. 710, 843 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Uniyal, K.L. Yadav, J. Alloy. Compd. 492(1–2), 406 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Bian, Y. Li, J. Li, J. Nie, F. Dong, M. Song, L. Wang, H. Dong, H. Li, X. Nie, X. Zhang, X. Li, L. Xie, J. Hazard. Mater. 336, 174 (2017)CrossRefGoogle Scholar
  27. 27.
    S.-Z. Lu, X. Qi, J. Alloys Compd. 708, 194 (2017)CrossRefGoogle Scholar
  28. 28.
    H. Yang, Q. Ke, H. Si, J. Chen, J. Appl. Phys. 111(2), 024104 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Singh, K.L. Yadav, J. Am. Ceram. Soc. 98(2), 574 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Zheng, F. Straub, Q. Zhan, P.-L. Yang, W.-K. Hsieh, F. Zavaliche, Y.-H. Chu, U. Dahmen, R. Ramesh, Adv. Mater. 18(20), 2747 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Wu, J. Wang, J. Appl. Phys. 105(12), 124107 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Ghasemi, M. Hasheminiasari, S.M. Masoudpanah, B. Safizade, J. Electron. Mater. 47(4), 2225 (2018)CrossRefGoogle Scholar
  33. 33.
    T. Sato, K. Haneda, M. Seki, T. Iijima, Appl. Phys. A 50(1), 13 (1990)CrossRefGoogle Scholar
  34. 34.
    W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G.M. Kalvius, A. Martin, M.K. Krause, I. Halevy, J. Gal, W. Schäfer, G. Will, M. Hillberg, R. Wäppling, Phys. Rev. B 53(14), 9143 (1996)CrossRefGoogle Scholar
  35. 35.
    N.G. Yadav, L.S. Chaudhary, P.A. Sakhare, T.D. Dongale, P.S. Patil, A.D. Sheikh, J. Colloid Interface Sci. 527, 289 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Li, M. Zou, W. Wen, Y. Zhao, Y. Lin, L. Chen, H. Lai, L. Guan, Z. Huang, J. Mater. Chem. A 2(26), 10257 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, ACS Appl. Mater. Interfaces. 7(32), 17811 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Nakashima, K. Takayama, K. Shigematsu, H. Fujisawa, M. Shimizu, Jpn. J. Appl. Phys. 55(10S), 10TA07 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Yang, F. Zhang, X. Xie, H. Sun, L. Zhang, S. Fan, J. Alloys Compd. 734, 243 (2018)CrossRefGoogle Scholar
  40. 40.
    Q.-Y. Rong, W.-Z. Xiao, G. Xiao, A.-M. Hu, L.-L. Wang, J. Alloys Compd. 674, 463 (2016)CrossRefGoogle Scholar
  41. 41.
    B. Safizade, S.M. Masoudpanah, M. Hasheminiasari, A. Ghasemi, RSC Adv. 8(13), 6988 (2018)CrossRefGoogle Scholar
  42. 42.
    J.S. Bangruwa, B.K. Vashisth, A. Beniwal, V. Verma, Integr. Ferroelectr. 184(1), 135 (2017)CrossRefGoogle Scholar
  43. 43.
    G. Williamson, W. Hall, Acta Metall. 1(1), 22 (1953)CrossRefGoogle Scholar
  44. 44.
    X. Zhai, H. Deng, W. Zhou, P. Yang, J. Chu, J. Phys. D 48(38), 385002 (2015)CrossRefGoogle Scholar
  45. 45.
    G. Rojas-George, J. Silva, R. Castañeda, D. Lardizábal, O.A. Graeve, L. Fuentes, A. Reyes-Rojas, Mater. Chem. Phys. 146(1–2), 73 (2014)CrossRefGoogle Scholar
  46. 46.
    G.S. Lotey, N.K. Verma, Mater. Sci. Semicond. Process. 21, 206 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509(6), 2909 (2011)CrossRefGoogle Scholar
  48. 48.
    D. Jesuvathy Sornalatha, P. Murugakoothan, Mater. Lett. 124, 219 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Wang, Y. Zheng, M.-Q. Cai, H. Huang, H.L.W. Chan, Solid State Commun. 149(15–16), 641 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, Chem. Eng. J. 221, 16 (2013)CrossRefGoogle Scholar
  51. 51.
    K.V. Chandekar, K.M. Kant, Superlattices Microstruct. 111, 610 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations