Advertisement

Structure and microwave dielectric properties of a novel low-firing Ba1−xSrxCo2V2O8 ceramics

  • Zhenjun Qing
  • Zhenguo Ji
Article
  • 10 Downloads

Abstract

A low-firing BaCo2V2O8 ceramic was prepared by solid-state reaction and its microwave dielectric properties were reported for the first time. The sample calcined at 700 °C exhibited a low relative dielectric constant (εr 16.7) and a high quality factor (Q(u) × f: 73,200 GHz), as well as a poor temperature coefficient of resonator frequency (τf − 41 ppm/°C). In order to obtain a near-zero τf value, Ba1−xSrxCo2V2O8 (x = 0–0.25) ceramics were synthesized by replacing Ba2+ with Sr2+ and the relationship between crystal structure and microwave dielectric properties were studied. The epsilon(r) decreased with the decrease of ionic polarization. The drop in the packing fraction worsened the Q(u) × f values. The varieties in τf values were considered to be closely related to A-site bond valence. Specimen (x = 0.25) fired at 730 °C possess superior microwave dielectric properties: εr 14.6, Q(u) × f = 52,120 GHz and τf − 1.6 ppm/°C.

References

  1. 1.
    H. Zheng, S. Yu, L. Li, X. Lyu, Z. Sun, S. Chen, Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1 − x)MgMoO4 − xTiO2 composite ceramics. J. Eur. Ceram. Soc. 37, 4661–4665 (2017)CrossRefGoogle Scholar
  2. 2.
    X.-H. Ma, S.-H. Kweon, S. Nahm, C.-Y. Kang, S.-J. Yoon, Y.-S. Kim, Synthesis and microwave dielectric properties of Bi2Ge3O9 ceramics for application as advanced ceramic substrate. J. Eur. Ceram. Soc. 37, 605–610 (2017)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37, 3959–3963 (2017)CrossRefGoogle Scholar
  5. 5.
    K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1 − x)ZnAl2O4 − xTiO2 system for microwave substrate applications. Eur. Phys. J. B 41, 301–306 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Guo, H. Ohsato, K. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26, 1827–1830 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Thomas, M.T. Sebastian, Effect of B2O3-Bi2O3-SiO2-ZnO glass on the sintering and microwave dielectric properties of 0.83 ZnAl2O4-0.17 TiO2. Mater. Res. Bull. 43, 843–851 (2008)CrossRefGoogle Scholar
  8. 8.
    J.-S. Kim, M.-E. Song, M.-R. Joung, J.-H. Choi, S. Nahm, J.-H. Paik, B.-H. Choi, H.-J. Lee, Low-temperature sintering and microwave dielectric properties of V2O5-added Zn2SiO4 ceramics. Adv. Mater. Res. 66, 104–107 (2008)Google Scholar
  9. 9.
    H. Xiang, L. Fang, W. Fang, Y. Tang, C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017)CrossRefGoogle Scholar
  10. 10.
    G.q. Zhang, J. Guo, H. Wang, Ultra-low temperature sintering microwave dielectric ceramics based on Ag2O-MoO3 binary system. J. Am. Ceram. Soc. (2017).  https://doi.org/10.1111/jace.14760 Google Scholar
  11. 11.
    L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Novel low-firing microwave dielectric ceramics: BaMV2O7 (M=Mg, Zn). Ceram. Int. 40, 16835–16839 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Takahiro, S.F. Wang, Y. Shoko, J. Sei-Joo, R.E. Newnham, Effect of glass additions on BaO-TiO2-WO3 microwave ceramics. J. Am. Ceram. Soc. 77, 1909–1916 (1994)CrossRefGoogle Scholar
  13. 13.
    M. Udovic, M. Valant, D. Suvorov, Dielectric characterisation of ceramics from the TiO2-TeO2 system. J. Eur. Ceram. Soc. 21, 1735–1738 (2001)CrossRefGoogle Scholar
  14. 14.
    H. Guo, Z. Wei, C. Li, Y. Tang, L. Fang, Effects of sintering temperature and Ca substitution on microwave dielectric properties of Mg3V2O8. J. Mater. Sci. Mater. Electron. 26, 5342–5346 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Umemura, H. Ogawa, A. Kan, Low temperature sintering and microwave dielectric properties of (Mg3 − xZnx)(VO4)2 ceramics. J. Eur. Ceram. Soc. 26, 2063–2068 (2006)CrossRefGoogle Scholar
  16. 16.
    M.R. Joung, J.S. Kim, M.E. Song, J.H. Choi, J.W. Sun, S. Nahm, J.H. Paik, B.H. Choi, Effect of Li2CO3 addition on the sintering temperature and microwave dielectric properties of Mg2V2O7 ceramics. J. Am. Ceram. Soc. 92, 2151–2154 (2009)CrossRefGoogle Scholar
  17. 17.
    M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, Low-temperature sintering and microwave dielectric properties of the Li2CO3-added Ba2V2O7 ceramics. J. Am. Ceram. Soc. 93, 934–936 (2010)CrossRefGoogle Scholar
  18. 18.
    M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, Microstructure and microwave dielectric properties of the Li2CO3-added Sr2V2O7 ceramics. J. Am. Ceram. Soc. 93, 2132–2135 (2010)CrossRefGoogle Scholar
  19. 19.
    C. Li, H. Xiang, L. Fang, Temperature stable microwave dielectric ceramics in LiCa3−xSrxMgV3O12 ceramics. J. Mater. Sci Mater. Electron. 27, 10958–10962 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, R. Zuo, Structure and microwave dielectric properties of Ba1−xSrxMg2V2O8 ceramics, Ceram. Int. 42(9), 10801–10807 2016CrossRefGoogle Scholar
  21. 21.
    Z.Z. He, D.S. Fu, T. Kyomen, T. Taniyama, M. Itoh, Crystal growth and magnetic properties of BaCo2V2O8. Chem. Mater. 17, 2924–2926 (2005)CrossRefGoogle Scholar
  22. 22.
    M.W. Lufaso, Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM‘2O9 (M=Mg, Ni, Zn; M’=Nb, Ta). Perovskites, Chem. Mater. 16, 2148–2156 (2004)CrossRefGoogle Scholar
  23. 23.
    B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  24. 24.
    J.J. Bian, J.Y. Wu, Designing of glass-free LTCC microwave ceramic Ca1−x(Li0.5Nd0.5)xWO4 by crystal chemistry. J. Am. Ceram. Soc. 95, 318–323 (2012)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  26. 26.
    Y.-C. Chen, Y.-N. Wang, C.-H. Hsu, Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ With Ni2+. Mater. Chem. Phys. 133(2), 829–833 (2012)CrossRefGoogle Scholar
  27. 27.
    E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+ B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, J. Wang, Z. Yue, Z. Gui, L. Li, Effect of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1−xsMgx)Nb2O6 ceramics. Ceram. Int. 30, 87–91 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations