Synthesis, structure and photoluminescent characterization of MYAl3O7:Eu3+ (M=Ca, Sr, Mg and Ba) red emitting materials for display applications

  • Sonika Kadyan
  • Devender Singh


MYAl3O7:Eu3+ (M=Ca, Sr, Mg and Ba) materials were synthesized via combustion method at 600 °C temperature. These materials were further given two heat treatments at 900 and 1050 °C for 2 h each to demonstrate the consequences of higher temperature on emission intensity and crystal assembly. The optimal concentration of activator ion in CaYAl3O7 lattice was 0.03 mol. The prepared phosphors were characterized with different techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL). XRD spectra showed CaYAl3O7 phosphor was of tetragonal symmetry with P421m space group. Particle size of the proposed materials was also calculated by this technique using Scherer’s equation. Chemical bonding, mainly metal–oxygen bonds were explained by FTIR technique. TEM analysis was used to study the three dimensional structure as well as to estimate the size of particles (55–70 nm). At 254 nm excitation wavelength, these were found to be strong red emitters due to typical 5D07F2 (forced electric dipole) transition at 610–616 nm. Their PL spectra were also having some weak emission bands viz. 5D07F1 (magnetic dipole) transition located at 587–591 nm and 5D07F3 transition at 650–655 nm. The nano size of the phosphors had made them suitable for a variety of display applications.



One of the authors (SK) appreciatively admit the economic support from Council of Scientific and Industrial Research (CSIR), New Delhi, India in the form of Senior Research Fellowship (SRF) with Award No. 09/382 (0170)/2014-EMR-1.


  1. 1.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R. 71, 1–34 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Selot, J. Tripathi, S. Tripathi, M. Aynyas, J. Biol. Chem. Lumin. 29, 362–366 (2014)Google Scholar
  3. 3.
    D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, Dalton Trans. 41, 3078–3086 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, J. Lin, J. Mater. Chem. C 5, 2927–2935 (2017)CrossRefGoogle Scholar
  5. 5.
    T.C. Lang, T. Han, L.L. Peng, M.J. Tu, Mater. Chem. Front. 1, 928–932 (2017)CrossRefGoogle Scholar
  6. 6.
    W.R. Liu, C.H. Huang, C.W. Yeh, J.C. Tsai, Y.C. Chiu, Y.T. Yeh, Inorg. Chem. 51, 9636–9641 (2012)CrossRefGoogle Scholar
  7. 7.
    D. Singh, V. Tanwar, S. Bhagwan, A.P. Simantilleke, I. Singh, P.S. Kadyan, Adv. Sci. Lett. 20(7–8), 1531–1534 (2014)CrossRefGoogle Scholar
  8. 8.
    V. Singh, V.K. Rai, K. Al-Shamerya, J. Nordmann, M. Haase, J. Lumin. 131, 2679–2682 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Singh, V. Tanwar, A.P. Simantilleke, B. Mari, P.S. Kadyan, I. Singh, J. Mater. Sci. Mater. Electron. 27(3), 2260–2266 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xua, J. Electrochem. Soc. 155(5), J128–J131 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Singh, V. Tanwar, A.P. Simantilke, B. Mari, P.S. Kadyan, I. Singh, Adv. Mater. Lett. 7(1), 47–53 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Liu, D. Ding, Z. Liu, F. Chen, C. Xia, Solid State Ion. 191(1), 68–72 (2011)CrossRefGoogle Scholar
  13. 13.
    H. Yu, X. Yu, X. Xu, T. Jiang, P. Yang, Q. Jiao, Opt. Commun. 317, 78–82 (2014)CrossRefGoogle Scholar
  14. 14.
    J.G. Mahakhode, S.J. Dhoble, C.P. Joshi, S.V. Moharil, J. Alloy. Compd. 438(1–2), 293–297 (2007)CrossRefGoogle Scholar
  15. 15.
    F. Mo, L. Zhou, Q. Pang, Y. Lan, Z. Liang, Curr. Appl. Phys. 13, 331–335 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Singh, V. Tanwar, S. Bhagwan, P.S. Sonika, B. Kadyan, Mari, Adv. Sci. Lett. 20, 1726–1729 (2014)CrossRefGoogle Scholar
  17. 17.
    V. Naresh, S. Buddhudu, J. Lumin. 137, 15–21 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Singh, V. Tanwar, S. Bhagwan, I. Singh, in Advanced Magnetic and Optical Materials, ed. by A. Tiwari, P.K. Lyer, V. Kumar, H. Swart (Wiley, Hoboken, 2016), p. 332Google Scholar
  19. 19.
    P. Upadhyay, D. Verma, A. Bourase, D.S. Prasad, V. Dubey, R. Tiwari, R.K. Tamrakar, Y. Parganiha, J. Kaur, Int. J. Lumin. Appl. 5(2), 239–241 (2015)Google Scholar
  20. 20.
    R.Y. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Chem. Rev. 112, 1957–2011 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Xu, P. Heng, T. Aiwei, Z. Jinping, G. Li, S. Hongxin, D. Guoyi, Y. Zhiping, W. Huike, T. Feng, J. Nanosci. Nanotechnol. 16(4), 3474–3479 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, J. Xu, Q. Cui, B. Yang, Sci. Rep. 7, 42464 (2017)Google Scholar
  23. 23.
    W.B. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, Adv. Mater. 24, 1805–1833 (2012)CrossRefGoogle Scholar
  24. 24.
    H.M. Yang, J.X. Shi, H.B. Liang, M.L. Gong, J. Mater. Sci. Eng. B 127(2–3), 276–279 (2006)Google Scholar
  25. 25.
    Y. Li, J. Zhang, Q. Xiao, R. Zeng, Mater. Lett. 62, 3787–3789 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Singh, V. Tanwar, S. Bhagwan, S. Sheoran, V. Nishal, A.P. Samantilleke, B. Mari, P.S. Kadyan, J. Nanoelectron. Optoelectron. 11(3), 305–310 (2016)CrossRefGoogle Scholar
  27. 27.
    V. Singh, S. Watanabe, T.K. Gundu Rao, H.Y. Kwak, J. Fluoresc. 21, 313–320 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493–14586 (2016)CrossRefGoogle Scholar
  29. 29.
    X.Y. Sun, L.W. Lin, W.F. Wang, J.C. Zhang, Appl. Phys. A 104, 83 (2011)CrossRefGoogle Scholar
  30. 30.
    M.S. Mendhe, S.P. Puppalwar, S.J. Dhoble, Int. J. Lumin. Appl. 6(3), 187–190 (2016)Google Scholar
  31. 31.
    H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, E.M. Goldys, Appl. Mater. Interfaces. 8, 30312–30319 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Singh, S. Kadyan, J. Mater. Sci. Mater. Electron. 28, 11142–11150 (2017)CrossRefGoogle Scholar
  33. 33.
    R.K. Tamrakar, D.P. Bisen, I.P. sahu, K. Upadhyay, M. Sahu, J. Display Tech. 12(9), 921–927 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Hong-Ling, Y. Xue, X. Xu-Hui, J. Ting-Ming, Y. Peng-Hui, J. Qing, Z. Da-Cheng, Q. Jian-Bei, Chin. Phys. B 22(9), 098503 (2013))CrossRefGoogle Scholar
  35. 35.
    D. Singh, S. Sheoran, V. Tanwar, S. Bhagwan, J. Mater. Sci. Mater. Electron. 28, 3243–3253 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Singh, S. Kadyan, S. Bhagwan, J. Mater. Sci. Mater. Electron. 28, 13478–13486 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations