Advertisement

Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots

  • Pooja DeviEmail author
  • Anupma Thakur
  • Sanjeev K. Bhardwaj
  • Shefali Saini
  • Prachi Rajput
  • Praveen Kumar
Article

Abstract

Carbon dots (CDs) have emerged out as a potential material amongst the carbon family for a wide range of applications including chemical/biological sensing, photocatalysis, bioimaging, etc. The green synthesis of these CDs from natural sources is gaining the significant interest of peer community for their wide utility. Herein, we present a facile one-step pyrolysis method for CDs synthesis from Aloe-Vera extract, which show bright blue luminescence under UV light with a quantum yield of 12.3%. Further, ex-situ morphological, structural and optical characterizations reveal their high quality and excitation independent emission behavior with the presence of carboxyl, hydroxyl functional groups. Furthermore, these CDs were studied for Fe(III) sensing in water without any surface modifications and assessed for their light activated antibacterial activity against E.Coli and Staphylococcus aureus.

Notes

Acknowledgements

The authors acknowledge Prof. R. K. Sinha, Director CSIR-CSIO, Chandigarh for his constant support. PD acknowledges Department of Science and Technology New Delhi, India for the research project Grant (SYST, GAP 375). AT acknowledges DST INSPIRE fellowship.

Supplementary material

10854_2018_9819_MOESM1_ESM.docx (681 kb)
Supplementary material 1 (DOCX 681 KB)

References

  1. 1.
    T.N. Hoheisel, S. Schrettl, R. Szilluweit, H. Frauenrath, Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 49, 6496–6515 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)CrossRefGoogle Scholar
  4. 4.
    V. Sharma, P. Tiwari, S.M. Mobin, Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Yan, Y. Zou, M. Wang, X. Mu, N. Yang, L. Chen, Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens. Actuators B 192, 488–495 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Ma, Y. Chen, J. Liu, Y. Han, S. Ma, X. Chen, Ratiometric fluorescent detection of chromium (VI) in real samples based on dual emissive carbon dots. Talanta 185, 249–257 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Kumar, A.R. Chowdhury, D. Laha, T.K. Mahto, P. Karmakar, S.K. Sahu, Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators B 242, 679–686 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Das, S. Ganguly, M. Bose, S. Mondal, A.K. Das, S. Banerjee, N.C. Das, A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off probe for selective sensing of copper ions. Mater. Sci. Eng. C 75, 1456–1464 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Wang, X. Wang, Y. Sun, One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens. Actuators B 241, 73–79 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Cui, Y. Wang, J. Liu, Q. Yang, B. Zhang, Y. Gao, Y. Wang, G. Lu, Dual functional N-and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sens. Actuators B 242, 1272–1280 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Chandra, A.R. Chowdhury, D. Laha, S.K. Sahu, Fabrication of nitrogen-and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron (III) sensing. Luminescence 33, 336–344 (2018)CrossRefGoogle Scholar
  12. 12.
    Q. Dou, X. Fang, S. Jiang, P.L. Chee, T.-C. Lee, X.J. Loh, Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv. 5, 46817–46822 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Karfa, E. Roy, S. Patra, S. Kumar, A. Tarafdar, R. Madhuri, P.K. Sharma, Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd2+/Fe3+, cell imaging and enhanced antibacterial activity. RSC Adv. 5, 58141–58153 (2015)CrossRefGoogle Scholar
  14. 14.
    N.A. Travlou, D.A. Ginnakoudakis, M. Algarra, A.M. Labella, E. Rodríguez-Castellón, T.J. Bandosz, S-and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon, 135, 104–111 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Beaulac, L. Schneider, P.I. Archer, G. Bacher, D.R. Gamelin, Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325, 973–976 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Thakur, S. Pandey, A. Mewada, V. Patil, M. Khade, E. Goshi, M. Sharon, Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J. Drug Deliv. (2014).  https://doi.org/10.1155/2014/282193 CrossRefGoogle Scholar
  17. 17.
    B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35, 4428–4435 (2014)CrossRefGoogle Scholar
  18. 18.
    M.J. Meziani, X. Dong, L. Zhu, L.P. Jones, G.E. LeCroy, F. Yang, S. Wang, P. Wang, Y. Zhao, L. Yang, Visible-light-activated bactericidal functions of carbon “Quantum” dots. ACS Appl. Mater. Interfaces 8, 10761–10766 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Habiba, D.P. Bracho-Rincon, J.A. Gonzalez-Feliciano, J.C. Villalobos-Santos, V.I. Makarov, D. Ortiz, J.A. Avalos, C.I. Gonzalez, B.R. Weiner, G. Morell, Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl Mater. Today 1, 80–87 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Han, H. Zhang, Y. Xie, L. Liu, C. Shan, X. Li, W. Liu, Y. Tang, Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Appl. Surf. Sci. 328, 368–373 (2015)CrossRefGoogle Scholar
  21. 21.
    B. De, K. Gupta, M. Mandal, N. Karak, Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: mechanical, thermal, antimicrobial and optical properties. Mater. Sci. Eng.: C 56, 74–83 (2015)CrossRefGoogle Scholar
  22. 22.
    Y.J. Li, S.G. Harroun, Y.C. Su, C.F. Huang, B. Unnikrishnan, H.J. Lin, C.H. Lin, C.C. Huang, Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv. Healthcare Mater. 5, 2545–2554 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Ngu-Schwemlein, S.F. Chin, R. Hileman, C. Drozdowski, C. Upchurch, A. Hargrove, Carbon nanodots as molecular scaffolds for development of antimicrobial agents. Bioorg. Med. Chem. Lett. 26, 1745–1749 (2016)CrossRefGoogle Scholar
  24. 24.
    S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Surjushe, R. Vasani, D. Saple, Aloe vera: a short review. Indian J. Dermatol. 53, 163 (2008)CrossRefGoogle Scholar
  26. 26.
    A.-M. Alam, B.-Y. Park, Z.K. Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 17, 3791–3797 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Mondal, P. Purkayastha, α-cyclodextrin functionalized carbon dots: pronounced photoinduced electron transfer by aggregated nanostructures. J. Phys. Chem. C 120, 14365–14371 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Chunduri, A. Kurdekar, S. Patnaik, B.V. Dev, T.M. Rattan, V. Kamisetti, Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Mater. Focus 5, 55–61 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Schmitt, H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegrad. 41, 1–11 (1998)CrossRefGoogle Scholar
  31. 31.
    W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens. Actuators B 241, 190–198 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem.-A Eur. J. 19 (2013) 7243–7249CrossRefGoogle Scholar
  33. 33.
    N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016)CrossRefGoogle Scholar
  34. 34.
    T.N.J.I. Edison, R. Atchudan, J.-J. Shim, S. Kalimuthu, B.-C. Ahn, Y.R. Lee, Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J. Photochem. Photobiol. B 158, 235–242 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, Y. Dou, Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron. 60, 292–298 (2014)CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, W. Sun, P. Wu, Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustain. Chem. Eng. 3, 1412–1418 (2015)CrossRefGoogle Scholar
  37. 37.
    R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim, Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens. Actuators B 246, 497–509 (2017)CrossRefGoogle Scholar
  38. 38.
    X. Sun, J. He, S. Yang, M. Zheng, Y. Wang, S. Ma, H. Zheng, Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J. Photochem. Photobiol. B 175, 219–225 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Shi, G. Ni, J. Tu, X. Jin, J. Peng, Green synthesis of fluorescent carbon dots for sensitive detection of Fe2+ and hydrogen peroxide. J. Nanopart. Res. 19, 209 (2017)CrossRefGoogle Scholar
  40. 40.
    P. Das, S. Ganguly, P.P. Maity, M. Bose, S. Mondal, S. Dhara, A.K. Das, S. Banerjee, N.C. Das, Waste chimney oil to nano lights: a low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. J. Photochem. Photobiol., B 180, 56–67 (2018)CrossRefGoogle Scholar
  41. 41.
    F. Edition, Guidelines for drinking-water quality. WHO Chron. 38, 104–108 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Central Scientific Instruments OrganisationChandigarhIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)Council of Scientific and Industrial ResearchNew DelhiIndia
  3. 3.Department of Materials ScienceIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations