Advertisement

Enhancement of dielectric and magnetic properties in phase pure, dense BiFeO3 nanoceramics synthesized by spark plasma sintering techniques

  • Yahui Tian
  • Qiuyun Fu
  • Fei Xue
  • Ling Zhou
  • Chaohong Wang
  • Haibo Gou
  • Yunxiang Hu
  • Zhiping Zheng
  • Wei Luo
  • Mingzhi Zhang
Article
  • 3 Downloads

Abstract

Phase pure, dense BiFeO3 (BFO) ceramics with average grain sizes of ~ 110 nm, ~ 450 nm, and ~ 1.15 µm were fabricated by spark plasma sintering method. BFO ceramics exhibited grain-size-dependent magnetic properties, which ascribed to the antiferromagnetism–ferromagnetism (AFM–FM) transition. For BFO nanoceramics (~ 110 nm), such transition was much significant, and contributed to a large exchange bias field of HEB = 500 Oe at 5 K. In addition, BFO nanoceramics (~ 110 nm) exhibited lower leakage current and higher resistivity compared to the larger-grained BFO ceramics (~ 450 nm and ~ 1.15 µm). The calculated activation energies (Ea) and X-ray photoelectron spectroscopy analyses revealed the existence of different types of defects in BFO ceramics with different grain sizes.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61571203), the Fundamental Research Projects of Shenzhen City: JCYJ20150831202835225. The authors acknowledge the assistance by the Analytical and Testing Center of Huazhong University of Science and Technology.

References

  1. 1.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, Science 299, 1719 (2003)CrossRefGoogle Scholar
  2. 2.
    A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, Adv. Mater. 23, 1277 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, Nat. Mater. 12, 641 (2013)CrossRefGoogle Scholar
  4. 4.
    Y.K. Liu, Y.W. Yin, S.N. Dong, S.W. Yang, T. Jiang, Appl. Phys. Lett. 104, 043507 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Ji, K. Yao, Y.C. Liang, Adv. Mater. 22, 1763 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Appl. Phys. Lett. 84, 1731 (2004)CrossRefGoogle Scholar
  7. 7.
    S.H. Song, Q.S. Zhu, L.Q. Weng, V.R. Mudinepalli, J. Eur. Ceram. Soc. 35, 131 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Yan, G.Q. Tan, W.L. Liu, W. Ye, A. Xia, H.J. Ren, J. Mater. Sci. Mater. Electron. 26, 6232 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Perejón, N. Masó, A.R. West, E. Pedro, J. Sánchez, J. Am. Ceram. Soc. 96, 1220 (2013)CrossRefGoogle Scholar
  11. 11.
    Q. Fu, F. Xue, Z. Zheng, L. Zhou, Y. Tian, Ceram. Int. 41, 4050 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Wu, Y.B. Lin, J.J. Gong, F. Zhang, M. Zeng, J. Phys. D 46, 145001 (2013)CrossRefGoogle Scholar
  13. 13.
    S.Z. Lu, X. Qi, J. Am. Ceram. Soc. 97, 2185 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Das, S. Sharma, K. Mandal, J. Magn. Magn. Mater. 401, 129 (2016)CrossRefGoogle Scholar
  15. 15.
    N. Masó, A.R. West, Chem. Mater. 24, 2127 (2012)CrossRefGoogle Scholar
  16. 16.
    Z. Dai, Y. Akishige, J. Phys. D 43, 445403 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Perejón, P.E.S. Jiménez, R. Poyato, N. Masó, A.R. West, J. Eur. Ceram. Soc. 35, 2283 (2015)CrossRefGoogle Scholar
  18. 18.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wang, Nano Lett. 7, 776 (2007)Google Scholar
  19. 19.
    F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, Sci. Rep. 3, 2907 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, J. Phys. Chem. C 114, 12432 (2010)CrossRefGoogle Scholar
  21. 21.
    Q. Ke, X. Lou, Y. Wang, W. John, Phys. Rev. B 82, 024102 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Gu, J. Zhao, W. Zhang, S. Liu, S. Ge, Ceram. Int. 42, 8863 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J. Chem. Phys. 219, 2812 (2003)CrossRefGoogle Scholar
  24. 24.
    F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 531 (2001)CrossRefGoogle Scholar
  25. 25.
    A. Reetu, S. Agarwal, Sanghi, Ashima, J. Appl. Phys. 110, 073909 (2011)CrossRefGoogle Scholar
  26. 26.
    K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Noguésa, I.K. Schuller, J. Magn. Magn. Mater. 15, 203 (1999)CrossRefGoogle Scholar
  28. 28.
    M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Phys. Rev. B 77, 144403 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yahui Tian
    • 1
  • Qiuyun Fu
    • 2
    • 3
  • Fei Xue
    • 1
  • Ling Zhou
    • 2
    • 3
  • Chaohong Wang
    • 2
    • 3
  • Haibo Gou
    • 2
    • 3
  • Yunxiang Hu
    • 2
    • 3
  • Zhiping Zheng
    • 2
    • 3
  • Wei Luo
    • 2
    • 3
    • 4
  • Mingzhi Zhang
    • 2
    • 3
  1. 1.School of Information EngineeringJiangxi University of TechnologyNanchangPeople’s Republic of China
  2. 2.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  3. 3.Engineering Research Center for Functional CeramicsMinistry of EducationWuhanPeople’s Republic of China
  4. 4.Institute of Huazhong University of Science and TechnologyShenzhenPeople’s Republic of China

Personalised recommendations