Advertisement

Dielectric, humidity behavior and conductivity mechanism of Mn0.2Ni0.3Zn0.5Fe2O4 ferrite prepared by co-precipitation method

  • Tuğba Şaşmaz Kuru
  • Mehmet Kuru
  • Sadık Bağcı
Article
  • 49 Downloads

Abstract

Mn–Ni–Zn ferrite with the chemical formula of Mn0.2Ni0.3Zn0.5Fe2O4 was prepared by co-precipitation method. The X-ray diffraction (XRD) results show that the prepared sample crystallizes in the cubic spinel structure with the space group of Fm3m. The morphological analysis of the sample was investigated by scanning electron microscopy (SEM). The dielectric properties of Mn0.2Ni0.3Zn0.5Fe2O4 ferrite were studied in a frequency range from 20 Hz to 10 MHz and at a temperature range from 293 to 733 K. The dielectric constant decreases with the increasing frequency for all the temperature values chosen. The AC conductivity mechanism was found the small polaron type of conductivity, and in addition to that, the DC conductivity can be explained by Arrhenius type conductivity. According to the dielectric results, relaxation process fits Cole–Cole model. Finally, the effect of the relative humidity upon the impedance of the sample was discussed for a frequency range between 20 Hz and 10 MHz. It is found that the impedance values decrease almost linearly with the increasing % RH (relative humidity) values at low frequencies, while the impedance of the sample is independent of % RH at high frequencies.

References

  1. 1.
    U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.-F. Bobo, J. Fontcuberta, A. Fert, Adv. Mater. 18, 1733–1736 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22, 2729–2742 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Gu, W. Zhu, C. Jia, R. Zhao, W. Schmidt, Y. Wang, Chem. Commun. 47, 337–5339 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Li, K. Guo, J. Li, X. Dong, T. Yuan, X. Li, H. Yang, ACS Appl. Mater. Interfaces 6, 20940–20957 (2014)Google Scholar
  5. 5.
    A.G. Hufnagel, K. Peters, A. Müller, C. Scheu, D. Fattakhova-Rohlfing, T. Bein, Adv. Funct. Mater. 26, 4435–4443 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Cao, H. Qin, X. Niu, D. Jia, Ceram. Int. 42, 10697–10703 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  8. 8.
    P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116, 207–213 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Jalaiah, K.V. Babu, J. Magn. Magn. Mater. 423, 275–280 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Heini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Ceram. Int. 43, 2529–2536 (2017)CrossRefGoogle Scholar
  11. 11.
    E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, J. Alloys Compd. 726, 187–194 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Md, T. Rahaman, R. Nusrat, A.K.M. Maleque, Akther, Hossain, J. Magn. Magn. Mater. 451, 391–406 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Chikazumi, Physics of Ferromagnetism (Clarendon Press, Oxford, 1997)Google Scholar
  14. 14.
    A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626–6629 (2002)CrossRefGoogle Scholar
  15. 15.
    A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 92, 3872–3876 (2002)CrossRefGoogle Scholar
  16. 16.
    A.K. Singh, A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Lett. 57, 1040–1044 (2003)CrossRefGoogle Scholar
  17. 17.
    A. Verma, R. Chatterjee, J. Magn. Magn. Mater. 306, 313–320 (2006)CrossRefGoogle Scholar
  18. 18.
    M.A. Rahman, A.K.M. Akther Hossain, Phys. Scr. 89, 1–8 (2014)CrossRefGoogle Scholar
  19. 19.
    A.A. Sattar, H.M. El-Sayed, K.M. El-Shokrofy, M.M. El-Tabey, J. Mater. Eng. Perform. 14, 99–103 (2005)CrossRefGoogle Scholar
  20. 20.
    D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Phys. Status Solidi A 207, 2355–2363 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)Google Scholar
  22. 22.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  23. 23.
    E. Sentürk, Y. Köseoğlu, T. Sasmaz, F. Alan, M. Tan, J. Alloys Compd. 578, 90–95 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Gao, M. Zhang, M. Guo, Ceram. Int. 41, 8155–8162 (2015)CrossRefGoogle Scholar
  25. 25.
    M.S. Samadi, H. Shokrollahia, A. Zamanian, Mater. Chem. Phys. 215, 355–359 (2018)CrossRefGoogle Scholar
  26. 26.
    D.M. Ghone, V.L. Mathe, K.K. Patankar, S.D. Kaushik, J. Alloys Compd. 739, 52–61 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Dabagh, K. Chaudhary, Z. Haider, J. Ali, Results Phys. 8, 93–98 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Irfan, N.A. Niaz, I. Ali, S. Nasir, A. Shakoor, A. Aziz, N. Karamat, N.R. Khalid, J. Electron. Mater. 44, 2369–2377 (2015)CrossRefGoogle Scholar
  29. 29.
    P. Chand, S. Vaish, P. Kumar, Physica B 524, 53–63 (2017)CrossRefGoogle Scholar
  30. 30.
    A.M. Mohammad, S.M. Ali Ridha, T.H. Mubarak, IJAER 13, 6026–6035 (2018)Google Scholar
  31. 31.
    K. Akhtar, M. Gul, I.U. Haq, S.S.A. Shah, Z.U. Khan, Inorg. Nano-Metal Chem. 47, 1722–1727 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Kaiser, J. Phys. Chem. Solids 71, 1451–1457 (2010)CrossRefGoogle Scholar
  33. 33.
    A.K. Pradhan, P.R. Mandal, K. Bera, S. Saha, T.K. Nath, Physica B 525, 1–6 (2017)CrossRefGoogle Scholar
  34. 34.
    K.M. Batoo, S. Kumar, C.G. Lee, Curr. Appl. Phys. 9, 1397–1406 (2009)CrossRefGoogle Scholar
  35. 35.
    C.G. Koops, Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  36. 36.
    J.C. Maxwell, Electric and Magnetism (Oxford University Press, New York, 1973), p. 828Google Scholar
  37. 37.
    T. Şaşmaz Kuru, E. Şentürk, V. Eyüpoğlu, J. Supercond. Nov. Magn. 30, 647–655 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Atiq, M. Majeed, A. Ahmad, S. Kumail Abbas, M. Saleem, S. Riaz, S. Naseem, Ceram. Int. 43, 2486–2494 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Kuru, M. Kuru, S. Bağcı, J. Alloys Compd. 753, 483–490 (2018)CrossRefGoogle Scholar
  40. 40.
    J.E. Kim, S.J. Kim, Y.S. Yang, Mater. Sci. Eng. A 304–306, 487–490 (2001)CrossRefGoogle Scholar
  41. 41.
    G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, J. Mol. Struct. 1051, 336–344 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Hashim, S.E. Alimuddin, R.K. Shirsath, S.S. Kotnala, S. Meena, A. Kumar, R.B. Roy, P. Jotania, R. Bhatt, Kumar, J. Alloys Compd. 573, 198–204 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Köseoğlu, E. Şentürk, V. Eyüpoğlu, T. Şaşmaz Kuru, M. Hashim, S.S. Meena, J. Supercond. Nov. Magn. 29, 2813–2819 (2016)CrossRefGoogle Scholar
  44. 44.
    Z. Lazarević, Č Jovalekić, D.L. Sekulić, A. Milutinović, S. Baloš, M. Slankamenac, N. Romčević, Mater. Res. Bull. 48, 4368–4378 (2013)CrossRefGoogle Scholar
  45. 45.
    L. A.Yusmar, E. Armitasari, Suharyadi, Mater. Today Proc. 5, 14955–14959 (2018)CrossRefGoogle Scholar
  46. 46.
    U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Ceram. Int. 43, 1129–1134 (2017)CrossRefGoogle Scholar
  47. 47.
    U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, J. Alloys Compd. 555, 225–231 (2013)CrossRefGoogle Scholar
  48. 48.
    C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Alloys Compd. 498, 203–206 (2010)CrossRefGoogle Scholar
  49. 49.
    Q. Qi, Y. Feng, T. Zhang, X. Zheng, G. Lu, Sens. Actuators B 139, 611–617 (2009)CrossRefGoogle Scholar
  50. 50.
    Q. Qi, T. Zhang, S. Wang, X. Zheng, Sens. Actuators B 137, 649–655 (2009)CrossRefGoogle Scholar
  51. 51.
    Q. Qi, T. Zhang, X. Zheng, L. Wan, Sens. Actuators B 135, 255–261 (2008)CrossRefGoogle Scholar
  52. 52.
    T. Şaşmaz Kuru, E. Şentürk, Sens. Actuators A 249, 62–67 (2016)CrossRefGoogle Scholar
  53. 53.
    V.K. Tomer, S. Duhan, Sens. Actuators B 223, 750–760 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vocational School of Health Services, Radiotherapy ProgramOkan UniversityIstanbulTurkey
  2. 2.Department of Metallurgy and Materials EngineeringOndokuz Mayıs UniversitySamsunTurkey
  3. 3.Department of Materials Science and EngineeringErciyes UniversityKayseriTurkey
  4. 4.Department of PhysicsSakarya UniversitySakaryaTurkey

Personalised recommendations