Advertisement

Efficient catalytic reduction of nitroarenes and organic dyes in water by synthesized Ag/diatomite nanocomposite using Alocasia macrorrhiza leaf extract

  • Mahmoud Nasrollahzadeh
  • Ebrahim Mehdipour
  • Mahboobe Maryami
Article

Abstract

In this work, we reported preparation of the silver nanoparticles (Ag NPs) supported on natural diatomite surface as a cheap support using Alocasia macrorrhiza leaf extract. The existing phytochemicals in the A. macrorrhiza leaf extract converts the silver ions to Ag NPs on diatomite as a natural support. The green synthesized Ag/diatomite nanocomposite was characterized by using various analytical techniques such as FT-IR, XRD, FESEM, TEM, EDS. The synthesized Ag NPs were identified using FT-IR and UV–visible spectrophotometry. The Ag/diatomite nanocomposite was used as an effective nanocatalyst for the reduction of 4-nitrophenol (4-NP), 2,4-dinitrophenylhydrazine (2,4-DNPH), methyl orange (MO), Congo red (CR) and Nigrosin (NS) using sodium borohydride at ambient temperature. Furthermore, the Ag/diatomite nanocomposite can be recovered and reused five times without marked loss of its catalytic activity.

Notes

Acknowledgements

We gratefully acknowledge the Iranian Nano Council and the University of Qom for the support of this work.

References

  1. 1.
    R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, Y. Deng, Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater. 170(1), 141–143 (2009)CrossRefGoogle Scholar
  2. 2.
    A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci, L. Palmisano, Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions. Environ. Sci. Technol. 35(5), 971–976 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Qin, K. Lin, Q. Shuai, H. Liang, J. Peng, C. Mao, Y. Ji, H. Wu, Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. J. Mater. Sci. Mater. Electron. 29, 9740–9744 (2018)CrossRefGoogle Scholar
  4. 4.
    U. Pagga, D. Brown, The degradation of dyestuffs: Part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15(4), 479–491 (1986)CrossRefGoogle Scholar
  5. 5.
    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron. 29, 10395–10410 (2018)CrossRefGoogle Scholar
  6. 6.
    F.K. Higson, Microbial degradation of nitroaromatic compounds, microbial degradation of nitroaromatic compounds. Adv. Appl. Microbiol. 37, 1–19 (1992)CrossRefGoogle Scholar
  7. 7.
    F. Han, V. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A 359(1–2), 25–40 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Khojasteh, M. Salavati-Niasari, F.S. Sangsefidi, Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. J. Alloys Compds. 746, 611–618 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Goudarzi, M. Salavati-Niasari, Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; characterization and investigation photocatalytic activity for degradation of some anionic dyes. J. Mol. Liq. 219, 851–857 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Goudarzi, M. Mousavi-Kamazani, M. Salavati-Niasari, Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci. Mater. Electron. 28(12), 8423–8428 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 82(3), 225–231 (2002)CrossRefGoogle Scholar
  12. 12.
    P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J. Photochem. Photobiol. A 185(1), 19–25 (2007)CrossRefGoogle Scholar
  13. 13.
    P. Raveendran, J. Fu, S.L. Wallen, Completely “Green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003)CrossRefGoogle Scholar
  14. 14.
    V.T.P. Vinod, P. Saravanan, B. Sreedhar, D. Keerthi Davi, R.B. Sashidhar, A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. 83(2), 291–298 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl. Catal. B 191, 209–227 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Maryami, M. Nasrollahzadeh, E. Mehdipour, S.M. Sajadi, Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int. J. Hydrogen Energy 41(46), 21236–21245 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq. 225, 645–651 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Ghanbari, F. Soofivand, M. Salavati-Niasari, Simple synthesis and characterization of Ag2CdI4/AgI nanocomposite as an effective photocatalyst by co-precipitation method. J. Mol. Liq. 223, 21–28 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Goudarzi, Z. Zarghami, M. Salavati-Niasari, Novel and solvent-free cochineal-assisted synthesis of Ag-Al2O3 nanocomposites via solid-state thermal decomposition route: characterization and photocatalytic activity assessment. J. Mater. Sci. Mater. Electron. 27(9), 9789–9797 (2016)CrossRefGoogle Scholar
  20. 20.
    S.S. Momeni, M. Nasrollahzadeh, A. Rustaiyan, Biosynthesis and application of Ag/bone nanocomposite for the hydration of cyanamides in Myrica gale L. extract as a green solvent. J. Colloid. Interface Sci. 499, 93–101 (2017)CrossRefGoogle Scholar
  21. 21.
    T.T. Hanh, N.T. Thu, L.A. Quoc, N.Q. Hien, Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation. Radiat. Phys. Chem. 139, 141–146 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Hazard. Mater. 173, 614–621 (2010)CrossRefGoogle Scholar
  23. 23.
    W. Zhaolun, Y. Yuxiang, Q. Xuping, Z. Jianbo, C. Yaru, N. Linxi, Decolouring mechanism of Zhejiang diatomite. Application to printing and dyeing wastewater. Environ. Chem. Lett. 3(1), 33–37 (2005)CrossRefGoogle Scholar
  24. 24.
    P.R. Das, S. Akter, Md.T. Islam, M.H. Kabir, M. Haque, Z. Khatun, M. Nurunnabi, Z. Khatun, Y. Lee, R. Jahan, M. Rahmatullah, A selection of medicinal plants used for treatment of diarrhea by folk medicinal practitioners of Bangladesh. Am.-Eurasian J. Sustain. Agric. 6(3), 153–161 (2012)Google Scholar
  25. 25.
    A. Joshi, B.S. Karnawat, J.P. Narayan, V. Sharma, Alocasia macrorrhiza: a decorative but dangerous plant. Int. J. Sci. Stud. 3, 221–223 (2015)Google Scholar
  26. 26.
    S.T. Han, Medicinal Plants in the South Pacific, Western Pacific Series No. 19 (Regional Office for the Western Pacific, Geneva, 1998), pp. 9–10Google Scholar
  27. 27.
    H.-H. Yeoh, Y.-C. Wee, L. Watson, Taxonomic variation in total leaf protein amino acid compositions of monocotyledonous plants. Biochem. Syst. Ecol. 14(1), 91–96 (1986)CrossRefGoogle Scholar
  28. 28.
    L. Nauheimer, P.C. Boyce, S.S. Renner, Giant taro and its relatives: a phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Mol. Phylogenet. Evol. 63(1), 43–51 (2012)CrossRefGoogle Scholar
  29. 29.
    Z. Sun, X. Yang, G. Zhang, S. Zheng,, R.L. Frost, A novel method for purification of low grade diatomite powders in centrifugal fields. Int. J. Miner. Process. 125, 18–26 (2013)CrossRefGoogle Scholar
  30. 30.
    M.A. Al-Ghouti, Y.S. Al-Degs, New adsorbents based on microemulsion modified diatomite and activated carbon for removing organic and inorganic pollutants from waste lubricants. Chem. Eng. J. 173(1), 115–128 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Sreedhar, D.K. Devi, D. Yada, Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun. 12(11), 1009–1014 (2011)CrossRefGoogle Scholar
  32. 32.
    R.J. Kalbasi, A.A. Nourbakhsh, F. Babaknezhad, Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds. Catal. Commun. 12, 955–960 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Islam, P. Mondal, A.S. Roy, K. Tuhina, Synthesis, characterization and catalytic activities of a reusable polymer-anchored palladium(II) complex: effective catalytic hydrogenation of various organic substrates. Transition Met. Chem. 35(4), 427–435 (2010)CrossRefGoogle Scholar
  34. 34.
    D. Shah, H. Kaur, Resin-trapped gold nanoparticles: an efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling. J. Mol. Catal. A 381, 70–76 (2014)CrossRefGoogle Scholar
  35. 35.
    N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A 385, 201–207 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Xu, Y. Yuan, R. Yuan, X. Fu, Enhanced photocatalytic performances of TiO2-graphene hybrids on nitro-aromatics reduction to amino-aromatics. RSC Adv. 3(39), 18002–18008 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Xie, F. Zhang, Y. Long, J. Ma, Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv. 3, 10329–10334 (2013)CrossRefGoogle Scholar
  38. 38.
    P. Wang, F. Zhang, Y. Long, M. Xie, R. Li, J. Ma, Stabilizing Pd on the surface of hollow magnetic mesoporous spheres: a highly active and recyclable catalyst for hydrogenation and Suzuki coupling reactions. Catal. Sci. Technol. 3(6), 1618–1624 (2013)CrossRefGoogle Scholar
  39. 39.
    A.K. Shil, D. Sharma, N.R. Guha, P. Das, Solid supported Pd (0): an efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Tetrahedron Lett. 53(36), 4858–4861 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Yang, S. Li, X. Zhang, X. Wang, J. Ma, Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J. Mater. Chem. A 2, 12060–12067 (2014)CrossRefGoogle Scholar
  41. 41.
    X. Wang, J. Fu, M. Wang, Y. Wang, Z. Chen, J. Zhang, J. Chen, Q. Xu, Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49(14), 5056–5065 (2014)CrossRefGoogle Scholar
  42. 42.
    Z. Duan, G. Ma, W. Zhang, Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds. Bull. Korean Chem. Soc. 33(12), 4003–4006 (2012)CrossRefGoogle Scholar
  43. 43.
    Z. Wang, C. Xu, G. Gao, X. Li, Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4, 13644–13651 (2014)CrossRefGoogle Scholar
  44. 44.
    N. Sahiner, Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 38(9), 1329–1356 (2013)CrossRefGoogle Scholar
  45. 45.
    K.-L. Wu, R. Yu, X.-W. Wei, Monodispersed FeNi2 alloy nanostructures: solvothermal synthesis, magnetic properties and size-dependent catalytic activity. CrystEngComm 14(22), 7626–7632 (2012)CrossRefGoogle Scholar
  46. 46.
    T.B. Devi, M. Ahmaruzzaman, S. Begum, A rapid, facile and green synthesis of Ag@AgCl nanoparticles for the effective reduction of 2,4-dinitrophenyl hydrazine. New J. Chem. 40, 1497–1506 (2016)CrossRefGoogle Scholar
  47. 47.
    A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)CrossRefGoogle Scholar
  48. 48.
    B.K. Ghosh, S. Hazra, B. Nak, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015)CrossRefGoogle Scholar
  49. 49.
    M. Atarod, M. Nasrollahzadeh, S.M. Sajadi, Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 462, 272–279 (2016)CrossRefGoogle Scholar
  50. 50.
    P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, C. Wang, B. Liu, B. Zou, A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering. Nanoscale 6, 5343–5350 (2014)CrossRefGoogle Scholar
  51. 51.
    B.R. Ganapuram, M. Alle, R. Dadigala, A. Dasari, V. Maragoni, V. Guttena, Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett. 5(4), 215–222 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahmoud Nasrollahzadeh
    • 1
  • Ebrahim Mehdipour
    • 2
  • Mahboobe Maryami
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of QomQomIran
  2. 2.Department of Chemistry, Faculty of ScienceLorestan UniversityKhorramabadIran

Personalised recommendations