Advertisement

Effects of annealing process and the additive on the electrical properties of chemical solution deposition derived 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thin films

  • Bowen Shen
  • Jing Wang
  • Hao Pan
  • Jiahui Chen
  • Jialu Wu
  • Mingfeng Chen
  • Ruixue Zhao
  • Kongjun Zhu
  • Jinhao Qiu
Article
  • 51 Downloads

Abstract

0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN–PT) thin films were deposited on (111)Pt/Ti/SiO2/Si substrates via the chemical solution deposition. Both of the annealing process and additive methanamide play an obvious part in the structure and electrical properties of PMN–PT films. The optimized high-qualitied PMN–PT thin film in present work is fabricated with the methanamide in the precursor and annealed at 650 °C for 20 min. The film exhibits pure perovskite phase and superior ferroelectricity. The saturation polarization Ps and remanent polarization Pr are 52.1 µC/cm2 and 18.7 µC/cm2 at 500 kV/cm with 1000 Hz. It also shows low leakage current density of approximately 1.0 × 10− 8 A/cm2 at 200 kV/cm.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572123); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors would thank Professor Y. H. Lin and Dr. J. Ma of Tsinghua University for their helpful discussion.

References

  1. 1.
    Y. Lu, J. Zheng, M. Golomb, F. Wang, H. Jiang, J. Zhao, Appl. Phys. Lett. 74, 3764 (1999)CrossRefGoogle Scholar
  2. 2.
    R. Herdier, M. Detalle, D. Jenkins, C. Soyer, D. Remiens, Sens. Actuators A 148, 122–128 (2008)CrossRefGoogle Scholar
  3. 3.
    J.C. Frederick, T.H. Kim, W. Maeng, A.A. Brewer, J.P. Podkaminer, W. Saenrang, V. Vaithyanathan, F. Li, L.Q. Chen, D.G. Schlom, S. Trolier-McKinstry, M.S. Rzchowski, C.B. Eom, Appl. Phys. Lett. 108, 132902 (2016)CrossRefGoogle Scholar
  4. 4.
    J.C. Ho, K.S. Liu, I.N. Lin, J. Mater. Sci. 28, 4497–4502 (1993)CrossRefGoogle Scholar
  5. 5.
    D.G. Zhou, H.J. Sun, X.F. Liu, H.T. Sui, Q.H. Gou, P.D. Liu, Y. Ruan, Ceram. Int. 43, 5901–5906 (2017)CrossRefGoogle Scholar
  6. 6.
    T.Y. Koo, S.W. Cheong, Appl. Phys. Lett. 80, 4205–4207 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin, Jpn. J. Appl. Phys. 39, 5581–5581 (2000)CrossRefGoogle Scholar
  8. 8.
    Y.C. Zhang, Z.Z. Yang, W.N. Ye, C.J. Lu, L.H. Xia, J. Mater. Sci. Mater. Electron. 22, 309–314 (2011)CrossRefGoogle Scholar
  9. 9.
    S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958–961 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Nagakari, K. Kamigaki, S. Nambu, Jpn. J. Appl. Phys. 35, 4933–4935 (1996)CrossRefGoogle Scholar
  11. 11.
    T.C. Goel, P. Kumar, A.R. James, C. Prakash, J. Electroceram. 13, 503–507 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Gong, J.F. Li, X. Chu, L. Li, J. Am. Ceram. Soc. 87, 1031–1034 (2004)CrossRefGoogle Scholar
  13. 13.
    P. Kumar, Sonia, R.K. Patel, C. Prakash, T.C. Goel, Mater. Chem. Phys. 110, 7–10 (2008)CrossRefGoogle Scholar
  14. 14.
    J.H. Lee, M.R. Choi, W. Jo, J.Y. Jang, M.Y. Kim, Ultramicroscopy 108, 1106–1109 (2008)CrossRefGoogle Scholar
  15. 15.
    S.Y. Lee, M.C.C. Custodio, H.J. Lim, R.S. Feigelson, J.P. Maria, S. Trolier-McKinstry, J. Cryst. Growth 226, 247–253 (2001)CrossRefGoogle Scholar
  16. 16.
    X.L. Wang, L. Zhang, X.H. Hao, S.L. An, Mater. Res. Bull. 65, 73–79 (2015)CrossRefGoogle Scholar
  17. 17.
    X.Y. Chen, J. Wang, K.H. Wong, C.L. Mak, G.X. Chen, J.M. Liu, M. Wang, Z.G. Liu, Appl. Phys. A 81, 1145–1149 (2005)CrossRefGoogle Scholar
  18. 18.
    M. Nayak, S.Y. Lee, T.Y. Tseng, Mater. Chem. Phys. 77, 34–42 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Feng, W. Wang, H. Ke, J.C. Rao, Y. Zhou, J. Alloys Compd 495, 154–157 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Arai, T. Ohno, T. Matsuda, N. Sakamoto, N. Wakiya, H. Suzuki, Thin Solid Films 585, 86–90 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.C. Zhang, W.N. Ye, Z.Z. Yang, C.J. Lu, L.H. Xia, J. Mater. Sci. Mater. Electron. 22, 91–95 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Okuwada, M. Imai, K. Kukuno, Jpn. J. Appl. Phys. 29, L1271–L1273 (1989)CrossRefGoogle Scholar
  23. 23.
    Y. Narendar, G.L. Messing, J. Am. Ceram. Soc. 80, 915–924 (1997)CrossRefGoogle Scholar
  24. 24.
    J.F. Scott, J. Phys. Condens. Matter 20, 021001 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Ishibashiand, H. Orihara, Integr. Ferroelectr. 9, 57–61 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bowen Shen
    • 1
    • 2
  • Jing Wang
    • 1
  • Hao Pan
    • 3
  • Jiahui Chen
    • 3
  • Jialu Wu
    • 3
  • Mingfeng Chen
    • 3
  • Ruixue Zhao
    • 3
  • Kongjun Zhu
    • 1
  • Jinhao Qiu
    • 1
  1. 1.State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Materials Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina

Personalised recommendations