Advertisement

Effect of dielectric response on discharge properties of PLZST antiferroelectric ceramics

  • Xiucai Wang
  • Jianwen Chen
  • Xinmei Yu
  • Tongqing Yang
  • Yewen Jiang
  • Yun Fan
  • Zhikui Duan
  • Faquan Yang
  • Zhongbin Pan
Article
  • 80 Downloads

Abstract

Dielectric capacitors play a key role in revolutionizing modern electronic and electrical devices. Among these capacitors, anti-ferroelectric (AFE) capacitors receive much attention due to nonlinear dielectric properties and high-power output. (Pb0.89Ba0.08La0.02)(Zr0.50Sn0.40Ti0.10)O3 AFE ceramic with excellent dielectric nonlinearity was prepared via the solid state reaction, and the influence of dielectric response on discharge properties of AFE ceramics was studied. The results showed that dielectric constant (ε) increased first and then decreased with electric field increasing and presented two peaks at 11.4 kV/cm and 16.9 kV/cm, corresponding to AFE–ferroelectric (FE) phase transition. Below 16.9 kV/cm, or before the AFE–FE phase transition, the discharge current increased. Beyond 16.9 kV/cm, or after AFE–FE phase transition, the current raised weakly and reached about 120A at 50 kV/cm, and it was hard to continue to increase the current after AFE–FE phase transitions. Therefore, dielectric response in AFEs had a great influence on the discharge performance. The results provided a simple method to select the appropriate working electric field for the practical application of AFEs capacitors.

Notes

Acknowledgements

We gratefully acknowledge Startup Foundation for Doctors of Foshan University (No:gg07032). This work was also supported by Smart Home Electronic Engineering Technology Center of Guangdong Province and Natural Science Foundation of Guangdong Province (Grant Nos: 2015A030313639 and 2015A030310296).

References

  1. 1.
    Z. Yang, Q. Li, S.F. Zhang, Y.Y. Li, L. Wang, J. Mater. Sci. 47, 8007–8012 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Zhao, L. Liu, J. Gao, S.J. Zhang, J.F. Li, Adv. Mater. 29(31), 1606949 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Ji, H.L. Ji, J.Z. Du, K.J. Zhu, J.H. Qiu, J. Mater. Sci.: Mater. Electron. 26, 2107–2112 (2015)Google Scholar
  4. 4.
    C. Pei, S.S. Liu, S.L. Jiang, Y.K. Zeng, Y. Yu, G.Z. Zhang, J. Mater. Sci. Mater. Electron. 26, 3236–3242 (2015)CrossRefGoogle Scholar
  5. 5.
    C.H. Xu, Z. Liu, X.F. Chen, S.G. Yan, F. Cao, X.L. Dong, G.S. Wang, AIP. Adv. 7(11), 115108 (2017)CrossRefGoogle Scholar
  6. 6.
    W.X. Gao, L. You, Y.J. Wang, G.L. Yuan, Y.H. Chu, Z.G. Liu, J.M. Liu, Adv. Elect. Mater.8, 1600542 (2017)CrossRefGoogle Scholar
  7. 7.
    B.L. Peng. H.Q. Fan, Q. Zhang, J. Am. Ceram. Soc. 96(6), 1852–1856 (2013)CrossRefGoogle Scholar
  8. 8.
    X.C. Wang, T.Q. Yang, J. Shen, Mater. Lett 181, 220–222 (2016)CrossRefGoogle Scholar
  9. 9.
    X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, Prog. Mater Sci. 63, 1–57 (2014)CrossRefGoogle Scholar
  10. 10.
    Z.B. Pan, B.H. Liu, J.W. Zhai, L.M. Yao, K. Yang, B. Shen. Nano. Energy 40, 587–595 (2017)CrossRefGoogle Scholar
  11. 11.
    B.L. Peng, H.Q. Fan, Q. Li, Q. Zhang, J. Alloy. Comp.549, 283–287 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Xu, J.J. Tian, Q. Zhu, Y.J. Feng, X.Y. Wei, Z. Xu. J. Appl. Phys, 122(2), 034105 (2017)Google Scholar
  13. 13.
    B.M. Xu, P. Moses, N.G. Pai, L.E. Cross, Appl. Phys. Lett. 72, 593 (1998)CrossRefGoogle Scholar
  14. 14.
    R. Xu, D. Tian, Z. Xu, Y.J. Feng, J. Fusion. Energy 34, 717–720 (2015)CrossRefGoogle Scholar
  15. 15.
    X.F. Chen, H.L. Zhang, F. Cao, G.S. Wang, X.L. Dong, Y.H. Gu. L. He, Y.S. Liu, J. Appl. Phys. 106, 034105 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Li, Q. Li, Q.F. Yan, Y.L. Zhang, X.Q. Xi, X.C. Chu, W.W. Cao, Appl. Phys. Lett. 101, 6014 (2012)Google Scholar
  17. 17.
    Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, J.F. Chen, Ceram. Inter, 41(2), 3030–3035 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, S.L. Jiang, B.Y. Fan, G.Z. Zhang, J. Alloys. Comp 622, 162–165 (2015)CrossRefGoogle Scholar
  19. 19.
    H.L. Zhang, X.F. Chen, F. Cao, G.S. Wang, X.L. Dong, Z.Y. Hu, T. Du, J. Am. Ceram. Soc. 93, 4015–4017 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiucai Wang
    • 1
    • 2
  • Jianwen Chen
    • 1
  • Xinmei Yu
    • 1
  • Tongqing Yang
    • 2
  • Yewen Jiang
    • 1
  • Yun Fan
    • 1
  • Zhikui Duan
    • 1
  • Faquan Yang
    • 1
  • Zhongbin Pan
    • 2
  1. 1.School of Electronic and Information EngineeringFoshan UniversityFoshanChina
  2. 2.Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations