Electrochemical, UV–Vis, and microscopical characteristics of sol–gel CeO2:V2O5 thin film

  • R. D. C. Balboni
  • R. M. J. Lemos
  • E. A. Moura
  • C. M. Cholant
  • C. F. Azevedo
  • I. M. Caldeira
  • A. Gündel
  • W. H. Flores
  • A. Pawlicka
  • C. O. Avellaneda


Cerium dioxide (CeO2) and cerium dioxide doped with vanadium pentoxide (CeO2:V2O5) were synthesized from sol–gel precursors and deposited by spin coating on a conductive glass substrate (FTO). The films with different concentration of dopant and number of deposited layers were studied throughout cyclic voltammetry (CV), chronoamperometry/chronocoulometry, atomic force microscopy (AFM), scanning electron microscopy (SEM), and UV–Vis spectroscopy. The best value of charge density of 18.9 mC cm−2 was obtained for CeO2 doped with 15 mol% of V2O5 film. The chemical diffusion coefficient of lithium ions into CeO2 was 1.73 × 10−12 and CeO2:V2O5 15 mol% 6.75 × 10−13 cm2 s−1. This film presented 79% of transparency in UV–Vis and 5% color change under ± 1.3 V of applied potentials. Structural analyses revealed its homogeneous surface and the root mean-squared roughness (RMS) value of 9.42 nm. Based on the obtained results, CeO2 doped with 15 mol% V2O5 film is a promising thin coating for the use in electrochromic devices as a passive counter-electrode.



The authors are indebted to FAPERGS (Grant 12/2239-9) and Capes for the financial support given to this research.


  1. 1.
    S.-Y. Zheng, A. Andersson-Fäldt, B. Stjerna, C. Granqvist, Optical properties of sputter-deposited cerium oxyfluoride thin films. Appl. Opt. 32(31), 6303–6309 (1993). CrossRefGoogle Scholar
  2. 2.
    F. Pinar Gokdemir, A. Evrim Saatci, O. Özdemir, B. Keskin, K. Kutlu, Structural, optical and electrochromic properties of cerium dioxide thin films prepared by sol–gel dip coating method. Mater. Sci. Semicond. Process. 38, 300–305 (2015). CrossRefGoogle Scholar
  3. 3.
    D.E. Shen, A.M. Österholm, J.R. Reynolds, Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J. Mater. Chem. C 3(37), 9715–9725 (2015). CrossRefGoogle Scholar
  4. 4.
    A. Bhosale, P. Shinde, N. Tarwal, R. Pawar, P. Kadam, P. Patil, Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode. Electrochim. Acta 55(6), 1900–1906 (2010). CrossRefGoogle Scholar
  5. 5.
    E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40(3-4), 264–267 (2008). CrossRefGoogle Scholar
  6. 6.
    E. Masetti, F. Varsano, F. Decker, Sputter-deposited cerium vanadium mixed oxide as counter-electrode for electrochromic devices. Electrochim. Acta 44(18), 3117–3119 (1999). CrossRefGoogle Scholar
  7. 7.
    S. Bakardjieva, P. Bezdička, T. Grygar, P. Vorm, Reductive dissolution of microparticulate manganese oxides. J. Solid State Electrochem. 4(6), 306–313 (2000). CrossRefGoogle Scholar
  8. 8.
    P. Baudry, A. Rodrigues, M.A. Aegerter, L. Bulhoes, Dip-coated TiO2-CeO2 films as transparent counter-electrode for transmissive electrochromic devices. J. Non-Cryst. Solids 121(1–3), 319–322 (1990). CrossRefGoogle Scholar
  9. 9.
    U.O. Krasovec, B. Orel, R. Reisfeld, Electrochromism of CeVO4 and Ce/V-Oxide Ion-Storage Films Prepared by the Sol-Gel Route. Electrochem. Solid-State Lett. 1(2), 104–106 (1998). CrossRefGoogle Scholar
  10. 10.
    D.R. Malini, C. Sanjeeviraja, H+-intercalation electrochemical/electrochromic properties of V-Ce mixed oxide thin films. Int. J. Electrochem. Sci. 8, 1349–1365 (2013).Google Scholar
  11. 11.
    S. Bishop, K. Duncan, E. Wachsman, Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim. Acta 54(5), 1436–1443 (2009). CrossRefGoogle Scholar
  12. 12.
    Y. Temerk, H. Ibrahim, A new sensor based on In doped CeO2 nanoparticles modified glassy carbon paste electrode for sensitive determination of uric acid in biological fluids. Sens. Actuators B 224, 868–877 (2016). CrossRefGoogle Scholar
  13. 13.
    H. Ibrahim, Y. Temerk, Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J. Electroanal. Chem. 780, 176–186 (2016). CrossRefGoogle Scholar
  14. 14.
    A. Almoabadi, S. Badilescu, V.-V. Truong, M. Alsawafta, V. Stancovski, T. Sharma, R. Brüning, Electrochromic and electrical properties of layered and tubular vanadium pentoxide thin films. In: Photonics North, 2015 (IEEE, 2015), pp. 1–8Google Scholar
  15. 15.
    E.E. Chain, Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl. Opt. 30(19), 2782–2787 (1991)CrossRefGoogle Scholar
  16. 16.
    C.F. Azevedo, R.D.C. Balboni, C.M. Cholant, E.A. Moura, R.M.J. Lemos, A. Pawlicka, A. Gündel, W.H. Flores, M. Pereira, C.O. Avellaneda, New thin films of NiO doped with V2O5 for electrochromic applications. J. Phys. Chem. Solids 110, 30–35 (2017). CrossRefGoogle Scholar
  17. 17.
    Z.C. Orel, B. Orel, Ion storage properties of CeO2 and mixed CeO2/SnO2 coatings. J. Mater. Sci. 30(9), 2284–2290 (1995). CrossRefGoogle Scholar
  18. 18.
    T.M. Westphal, C.M. Cholant, C.F. Azevedo, E.A. Moura, D.L. da Silva, R.M.J. Lemos, A. Pawlicka, A. Gündel, W.H. Flores, C.O. Avellaneda, Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. J. Electroanal. Chem. 790, 50–56 (2017). CrossRefGoogle Scholar
  19. 19.
    L.A.d. Carvalho, A.R.d. Andrade, P.R. Bueno, Espectroscopia de impedância eletroquímica aplicada ao estudo das reações heterogêneas em ânodos dimensionalmente estáveis. Quím. Nova 29(4), 796–804 (2006). CrossRefGoogle Scholar
  20. 20.
    C. Patil, N. Tarwal, P. Jadhav, P. Shinde, H. Deshmukh, M. Karanjkar, A. Moholkar, M. Gang, J. Kim, P. Patil, Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Curr. Appl. Phys. 14(3), 389–395 (2014). CrossRefGoogle Scholar
  21. 21.
    X. Xie, C. Gao, X. Du, G. Zhu, W. Xie, P. Liu, Z. Tang, Improved optical and electrochromic properties of niox films by low-temperature spin-coating method based on NiOx nanoparticles. Materials 11(5), 760 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Cholant, T. Westphal, R. Balboni, E. Moura, A. Gündel, W. Flores, A. Pawlicka, C. Avellaneda, Thin films of V2O5/MoO3 and their applications in electrochromism. J. Solid State Electrochem. 21(5), 1509–1515 (2017). CrossRefGoogle Scholar
  23. 23.
    C.O. Avellaneda, A. Pawlicka, Preparation of transparent CeO2-TiO2 coatings for electrochromic devices. Thin Solid Films 335(1–2), 245–248 (1998). CrossRefGoogle Scholar
  24. 24.
    C.O. Avellaneda, L.O.S. Bulhoes, A. Pawlicka, The CeO2-TiO2-ZrO2 sol-gel film: a counter-electrode for electrochromic devices. Thin Solid Films 471(1–2), 100–104 (2005). CrossRefGoogle Scholar
  25. 25.
    E. Da Costa, C.O. Avellaneda, A. Pawlicka: Alternative Nb2O5-TiO2 thin films for electrochromic devices. J. Mater. Sci. 36(6), 1407–1410 (2001). CrossRefGoogle Scholar
  26. 26.
    G.F. Azevedo, R.M.J. Lemos, J. Andrade, K.R.L. Castagno, A. Gundel, C.M. Cholant, C.F. Azevedo, A. Pawlicka, C.O. Avellaneda, Influence of Li+: V2O5 doping on Nb2O5 thin films electrochemical performance. Mol. Cryst. Liq. Cryst. 655(1), 71–78 (2017). CrossRefGoogle Scholar
  27. 27.
    D.S. Dalavi, R.S. Devan, R.S. Patil, Y.-R. Ma, P.S. Patil, Electrochromic performance of sol–gel deposited NiO thin film. Mater. Lett. 90, 60–63 (2013). CrossRefGoogle Scholar
  28. 28.
    P. Scherrer: Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, vol. 1918. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918). Weidmannsche Buchhandlung, Berlin (1918)Google Scholar
  29. 29.
    C.O. Avellaneda, A. Pawlicka, Lithium intercalation in CeO2-TiO2 thin film. Mol. Cryst. Liq. Cryst. 415, 221–227 (2004). CrossRefGoogle Scholar
  30. 30.
    J.-H. Lee, S. Yoon, B.-K. Kim, H.-W. Lee, H. Song, Electrical conductivity and defect structure of CeO2-ZrO2 mixed oxide. J. Mater. Sci. 37(6), 1165–1171 (2002). CrossRefGoogle Scholar
  31. 31.
    M.A. Aegerter, Sol-gel chromogenic materials and devices, in Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application, ed. by C.K. Jorgensen, R. Reisfeld (Springer, Berlin, 1996), pp. 149–194CrossRefGoogle Scholar
  32. 32.
    C.O. Avellaneda, M.A. Berton, L.O. Bulhoes, Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route. Sol. Energy Mater. Sol. Cells 92(2), 240–244 (2008). CrossRefGoogle Scholar
  33. 33.
    D. Johnson, S. Al Malek, B. Al-Rashdi, N. Hilal, Atomic force microscopy of nanofiltration membranes: effect of imaging mode and environment. J. Membr. Sci. 389, 486–498 (2012). CrossRefGoogle Scholar
  34. 34.
    J. Andrade, I. Cesarino, R. Zhang, J. Kanicki, A. Pawlicka, Properties of electrodeposited WO3 thin films. Mol. Cryst. Liq. Cryst. A 604, 71–83 (2014). CrossRefGoogle Scholar
  35. 35.
    S. Domingues, T. Pereira, A. Florentino, A. Cavalheiro, M. Saeki, Caracterização estrutural da cerâmica Tix(Sm0,2Ce0,8)1-xO2-delta pelo método de Rietveld. Cerâmica 53, 205–211 (2007). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. D. C. Balboni
    • 1
  • R. M. J. Lemos
    • 2
  • E. A. Moura
    • 3
  • C. M. Cholant
    • 1
  • C. F. Azevedo
    • 2
  • I. M. Caldeira
    • 1
  • A. Gündel
    • 4
  • W. H. Flores
    • 4
  • A. Pawlicka
    • 5
  • C. O. Avellaneda
    • 1
  1. 1.Centro de Desenvolvimento Tecnológico - CDTecUniversidade Federal de PelotasPelotasBrazil
  2. 2.Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFAUniversidade Federal de PelotasPelotasBrazil
  3. 3.Departamento de Física, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Universidade Federal do PampaBagéBrazil
  5. 5.IQSC-USPSão CarlosBrazil

Personalised recommendations