Skip to main content
Log in

Synthesis and characterization of tungsten disulfide thin films by spray pyrolysis technique for n-WS2/p-Si junction diode application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tungsten disulfide (WS2) thin films were deposited on the glass substrate by varying its temperature from 350 to 500 °C using jet nebulizer spray pyrolysis (JNSP) technique. The WS2 thin films were characterized through various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), UV–Visible spectroscopy (UV), photoluminescence (PL), Hall measurements and current–voltage (I–V) characteristics. XRD pattern revealed that the prepared WS2 films are polycrystalline in nature with rhombohedral and hexagonal crystal structures. The average crystallite size of WS2 thin films changed from 52.23 to 47.40 nm. SEM images showed the uniform grain size, which is agglomerated at the higher substrate temperature. The presence of elements like W and S was confirmed through EDX spectrum. From UV analysis, the minimum optical band gap and maximum absorption was obtained for the film deposited at 450 °C. The WS2 thin films exhibited an n-type semiconductor nature with the carrier concentration of 1014 cm−3, which was demonstrated through hall measurements. Also, the electrical resistivity of the WS2 films varied from 3.26 × 105 to 1.59 × 107 Ω cm. The p-Si/n-WS2 junction diode was fabricated with various substrate temperature of (350–500 °C). Junction diode parameters like ideality factor (n), barrier height (ϕB) and reverse saturation current (Io) values were calculated and interpreted based on the thermionic emission theory model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.J. Devadasan, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 3, 67 (2001)

    Article  Google Scholar 

  2. A. Ennaoui, K. Diesner, S. Fiecter, J. Mooser, F. Levy, J. Thin Solid Films 311, 146 (1997)

    Article  CAS  Google Scholar 

  3. H. Tributsch, H. Gerischer, C. Clemen, E. Bucher, J. Phys. Chem. 83, 655 (1979)

    CAS  Google Scholar 

  4. Y. Tomm, S. Fiechter, J. Ceram. Process. 6, 141 (2005)

    Google Scholar 

  5. A. Yilei Li, X. Chernikov, A. Zhang, H.M. Rigosi, A.M. Hill, D.A. van der Zande, E.-M. Chenet, J. Shih, T.F. Hone, Heinz, Phys. Rev. B 90, 205422 (2014)

    Article  Google Scholar 

  6. P. Roy, S.K. Srivastava, Thin Solid Films 496, 293 (2006)

    Article  CAS  Google Scholar 

  7. P.P. Hankare, A.A. Patil, P.A. .Chate, K.M. Garadkar, D.J. .Sathe, A.H. Manikshete, I.S. Mulla, J. Cryst. Growth 311, 15 (2008)

    Article  CAS  Google Scholar 

  8. G. Chatzitheodoru, S. Fiechter, M. Kunst, J. Luck, H. Tributsh, Mater. Res. Bull. 23, 1261 (1988)

    Article  Google Scholar 

  9. S.B. Sadale, S.R. Barman, P.S. Patil, Appl. Surf. Sci. 253, 3489 (2007)

    Article  CAS  Google Scholar 

  10. D. Tonti, F. Varsano, F. Decker, C. Gallif, M. Regulla, M. Remkar, J. Phys. Chem. B 101, 2485 (1997)

    Article  CAS  Google Scholar 

  11. A.A. Voevodin, J.S. Zabinski, J. Thin Solid Films 370, 223 (2000)

    Article  CAS  Google Scholar 

  12. A.A. Voevedin, J.P.O. Neull, J.S. Zabinski, J. Surf. Coat. Technol. 36, 116 (1999)

    Google Scholar 

  13. K. Ramnathan, S.W. Weller, J. Catal. 96, 249 (1985)

    Article  Google Scholar 

  14. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  15. J.W. Chung, Z. RDai, F.S. Ohuchi, J. Cryst. Growth 186, 137 (1988)

    Article  Google Scholar 

  16. M. Genut, R. Tenne, G. Hodes, J. Thin Solid Films 219, 30–35 (1992)

    Article  CAS  Google Scholar 

  17. M. Regula, C. Ballif, J.H. Moser, F. Levy, J. Thin Solid Films 280, 67 (1996)

    Article  CAS  Google Scholar 

  18. T. Tsrillina, S. Cohen, H. Cohen, L. Spair, M. Peisach, R. Tenne, A. Matthaeus, S. Tiefenbacher, W. Jaegermann, E.A. Ponomarev, C. Levy-Clement, Solar Energy Mater. 44, 457 (1996)

    Article  Google Scholar 

  19. J. Zabinski, M.S. Donley, N.T. Mc Devitt, S.V. Prasad, J. Mater. Sci. 58,, 4834 (1994)

    Article  Google Scholar 

  20. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, AIP Adv. 7, 085313 (2017)

    Article  Google Scholar 

  21. S. Alialy, S. Altndal, E.E. Tanrkulu, D.E. Yldz, J. Appl. Phys. 116, 083709 (2014)

    Article  Google Scholar 

  22. M. Balaji, J. Chandrasekaran, M. Raja, J. Mater. Sci. Semicond. Process 43, 104 (2016)

    Article  CAS  Google Scholar 

  23. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, J. Mater. Sci.-Mater. Electron. 29, 2618 (2018)

    Article  CAS  Google Scholar 

  24. S. Alfihed, M. Hossain, A. Alharbi, A. Alyamani, F.H. Alharbi, J. Mater. (2013) https://doi.org/10.1155/2013/603648

    Article  Google Scholar 

  25. D. Zhanga, Y. Jiab, J. Chaic, Z. Xu, Z. Zhaoe, M. Caof, Adv. Eng. 100, 434 (2017)

    Google Scholar 

  26. A. Begum, A. Hussain, A. Rahman, Beilstein J. Nanotechnol. 3, 438 (2012)

    Article  Google Scholar 

  27. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Superlatt. Microstruct. 119, 134 (2018)

    Article  CAS  Google Scholar 

  28. C. Chen, E.M. Kelder, P.J.J.M. van der Put, J. Schoonman, J. Mater. Chem. 6, 765 (1996)

    Article  CAS  Google Scholar 

  29. J.N. Yao, K. Hashimoto, A. Fujishima, Nature 355, 624 (1992)

    Article  CAS  Google Scholar 

  30. R. Suresh, V. Ponnuswamy, R. Mariappan, N. SenthilKumar, Ceram. Int. 40, 437 (2014)

    Article  CAS  Google Scholar 

  31. S.M. Sze, Semiconductor Devices, 2nd edn. (Wiley, New York, 2001) p. 224

    Google Scholar 

  32. R. Coehroon, C. Hass, R.A. De Groot, J. Phys. Rev. B 35, 6203 (1987)

    Article  Google Scholar 

  33. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. Heng, G. Tan, Eda, ACS Nano 7, 791 (2013)

    Article  CAS  Google Scholar 

  34. C. wang, S. Yang, W. Xiong, C. Xia, H. Cai, B. Chen, X. Wang, X. Zhang, Z. Wei, S. Tongay, J. Li, Q. Liu, ACS Appl. Mater. Interfaces 8, 1398 (2016)

    Article  Google Scholar 

  35. P.P. Hankare, A.H. Manikshete, D.J. Sathe, P.A. Chate, A.A. Patil, K.M. Gardkar, J. Cryst. Growth 311, 3386 (2009)

    Article  CAS  Google Scholar 

  36. P.P. Hankare, P.A. Chate, J. Mater. Chem. Phys. 117, 347 (2009)

    Article  CAS  Google Scholar 

  37. S.J. Helen, S. Devadason, T. Mahalingam, J. Mater. Sci.-Mater. Electron. 27, 4426 (2016)

    Article  CAS  Google Scholar 

  38. S. Muthukrishnan, T.A. Venkat Subramanian, T. Mahalingam, S.J. Helen, P. Sumathi, J. Mater. Sci.-Mater. Electron. 28, 4211–4218 (2017)

    Article  CAS  Google Scholar 

  39. E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, (Clarendon Press, Oxford, 1998), p. 25

    Google Scholar 

  40. T.T.A. Tuan, D.H. Kuo, J. Mater. Sci. Semicond. Process. 25(Iss 8), 3264–3270 (2014)

    CAS  Google Scholar 

  41. R. Priya, M. Sethu Raman, N. Senthil Kumar, J. Chandrasekaran, R. Balan, J. Optics 127, 7913 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumathi, P., Chandrasekaran, J., Marnadu, R. et al. Synthesis and characterization of tungsten disulfide thin films by spray pyrolysis technique for n-WS2/p-Si junction diode application. J Mater Sci: Mater Electron 29, 16815–16823 (2018). https://doi.org/10.1007/s10854-018-9776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9776-7

Navigation