Advertisement

An enhanced ultra-fast responding ethanol gas sensor based on Ag functionalized CuO nanoribbons at room-temperature

  • Zhenfa Wang
  • Fei Li
  • Haotian Wang
  • An Wang
  • Shumao Wu
Article

Abstract

An ultra-fast responding ethanol gas sensor based on the Ag-functionalized CuO nanoribbons was fabricated by a wet chemical method. Results indicated that Ag nanoparticles were on the surface of the CuO nanoribbons in the form of metallic Ag. The gas sensor performance based on CuO nanoribbons was remarkably enhanced by decorating with Ag nanoparticles. All results reveal that the Ag–CuO nanoribbons exhibit higher response and ultra-fast response time characteristic than CuO nanoribbons at room temperature. Particularly, the response time of the gas sensor based on Ag–CuO nanoribbons was about 2 s, which was five times shorter than that of the bare CuO nanoribbons.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (21201156) and the Fundamental Research Founds for National University, China University of Geosciences (Wuhan, CUG130401). The financial support was gratefully appreciated.

References

  1. 1.
    H. Karimimaleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi, Biosens. Bioelectron. 86, 879–884 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Karimi-Maleh, F. Tahernejad-Javazmi, A.A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelectron. 60, 1–7 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Liu, X. Wang, Q. Peng, Y. Li, Adv. Mater. 17, 764–767 (2005)CrossRefGoogle Scholar
  4. 4.
    X. Liu, M. Hu, Y. Wang, J. Liu, Y. Qin, J. Alloys Compd. 685, 364–369 (2016)CrossRefGoogle Scholar
  5. 5.
    A.I. Ayesh, A.F.S. Abu-Hani, S.T. Mahmoud, Y. Haik, Sens. Actuators B 231, 593–600 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, J. Alloys Compd. 672, 374–379 (2016)CrossRefGoogle Scholar
  7. 7.
    N. Ba, L. Zhu, G. Zhang, J. Li, H. Li, Sens. Actuators B 227, 142–148 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Mohammadpour, H. Ahmadvand, A. Iraji zad, Sens. Actuators A 216, 202–206 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Bejaoui, J. Guerin, J.A. Zapien, K. Aguir, Sens. Actuators B 190, 8–15 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Yan, X. Tian, F. Ma, J. Sun, Sens. Actuators B 221, 599–605 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Xie, R. Xing, Q. Li, L. Xu, H. Song, Sens. Actuators B 211, 255–262 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, J. Phys. Chem. C. 22, 11813–11819 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 161, 594–599 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Yang, F. Xiao, J. Wang, X. Su, Sens. Actuators B 207, 177–185 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Yan, X.Q. Tian, J. Sun, F.G. Ma, J. Mater. Sci.: Mater. Electron. 26, 280–287 (2015)Google Scholar
  16. 16.
    S. Cheraghia, M.A. Taher, H. Karimi-Maleh, J. Food Compos. Anal. 62, 254–259 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Tahernejadjavazmi, M. Shabaninooshabadi, H. Karimimaleh, Talanta 176, 208–213 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Lee, A. Katoch, J. Kim, S.S. Kim, Sens. Actuators B 222, 307–314 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Zeng, L. Tian, J. Xue, F. Lan, J. Alloys Compd. 647, 768–770 (2015)CrossRefGoogle Scholar
  20. 20.
    X.J. Wang, W. Wang, Y.L. Liu, Sens. Actuators B 168, 39–45 (2012)CrossRefGoogle Scholar
  21. 21.
    X.Q. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, Mater. Lett. 2, 49–52 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Tan, J. Chen, K. Liu, X. Huang, Sens. Actuators B 230, 46–53 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Zheng, G. Liu, A. Yao, Y. Xiao, J. Du, Y. Guo, D. Xiao, Q. Hu, M.M.F. Choi, Sens. Actuators B 195, 431–438 (2014)CrossRefGoogle Scholar
  24. 24.
    R.A. Zarate, F. Hevia, S. Fuentes, V.M. Fuenzalida, A. Zuniga, J. Solid State Chem. 180, 1464–1469 (2007)CrossRefGoogle Scholar
  25. 25.
    C.W. Chang, H.T. Wu, S.H. Huang, C.K. Chen, I.W. Un, T.J. Yen, Acta Mater. 61, 6993–6999 (2013)CrossRefGoogle Scholar
  26. 26.
    D.I. Son, C.H. You, T.W. Kim, Appl. Surf. Sci. 255, 8794–8797 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, J. Alloys Compd. 575, 115–122 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Umar, J. Lee, R. Kumar, O. Al-Dossary, A.A. Ibrahim, S. Baskoutas, Mater. Des. 105, 16–24 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Yin, S. Liu, Sens. Actuators B 227, 328–335 (2016)CrossRefGoogle Scholar
  30. 30.
    T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Sens. Actuators B 152, 73–81 (2011)CrossRefGoogle Scholar
  31. 31.
    S.S. Kalanur, I. Yoo, Y. Lee, H. Seo, Sens. Actuators B 221, 411–417 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Wang, B. Han, Z. Wang, L. Dai, H. Zhou, Y. Li, H. Wang, Sens. Actuators B 207, 791–800 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhenfa Wang
    • 1
  • Fei Li
    • 1
    • 2
  • Haotian Wang
    • 1
  • An Wang
    • 1
    • 2
  • Shumao Wu
    • 1
    • 2
  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations