Broad greenish-yellow luminescence in CaMoO4 by Si4+ acceptor doping as potential phosphors for white light emitting diode applications

  • Athira K. V. Raj
  • P. Prabhakar RaoEmail author
  • T. S. Sreena
  • T. R. Aju Thara


Intense broad greenish-yellow luminescence has been observed in CaMoO4 by Si4+ acceptor doping. The broad intense luminescence is attributed to the increased charge transfer transitions in MoO42− groups and defect luminescence due to distortion and defects. The Si4+ doping acts on two fronts, distorting the MoO4 tetrahedron and inducing oxygen vacancies promoting acceptor levels near the VB edge. The XPS core level spectra analysis indicates an asymmetric broadening of the peaks with an increase of fwhm suggesting defects and oxygen vacancies in the system. The defect and charge transfer luminescence increases competitively with Si4+ doping. The lifetime of the defect luminescence increases with Si4+ doping which suggests the increased radiative emissive transitions without quenching. These factors broadened the luminescence covering the most visible region (425–625 nm) enhancing the fwhm. The calculated CIE chromaticity coordinates fall in the greenish-yellow region with values (0.31, 0.45) making them potential phosphors for white LED applications.



The authors would like to acknowledge the Council of Scientific and Industrial Research, New Delhi, Government of India, for the research facilities and financial support.

Supplementary material

10854_2018_9757_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2686 KB)


  1. 1.
    Z. Cuimiao, J. Lin, Defect-related luminescent materials: synthesis, emission properties and applications. Chem. Soc. Rev. 41, 7938–7961 (2012)CrossRefGoogle Scholar
  2. 2.
    W.H. Green, K.P. Le, J. Grey, T.T. Au, M. Sailor, White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions. J. Science. 276, 1826–1828 (1997)CrossRefGoogle Scholar
  3. 3.
    T. Hayakawa, A. Hiramitsu, M. Nogami, White light emission from radical carbonyl-terminations in Al2O3–SiO2Al2O3–SiO2 porous glasses with high luminescence quantum efficiencies. Appl. Phys. Lett. 82, 2975–2977 (2003)CrossRefGoogle Scholar
  4. 4.
    T. Brankova, V. Bekiari, P. Lianos, Photoluminescence from Sol–Gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis. Chem. Mater. 15, 1855–1859 (2003)CrossRefGoogle Scholar
  5. 5.
    B.E. Yold, Thermochemically induced photoluminescence in sol–gel-derived oxide networks. J. Non-Cryst. Solids 147–148, 614–620 (1992)CrossRefGoogle Scholar
  6. 6.
    E. Cordoncillo, F.J. Guaita, P. Escribano, C. Philippe, B. Viana, C. Sanchez, Blue emitting hybrid organic–inorganic materials. Opt. Mater. 18, 309–320 (2001)CrossRefGoogle Scholar
  7. 7.
    M.E. Gimon-Kinsel, K. Groothuis, K.J. Balkus, Photoluminescent properties of MCM-41 molecular sieves. J. Microporous Mesoporous Mater. 20, 67–76 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Munekuni, T. Yamanaka, Y. Shimogaichi, K. Nagasawa, R. Tohmon, Y. Ohki, K. Nagasawa, Y. Hama, Various types of nonbridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 68, 1212–1217 (1990)CrossRefGoogle Scholar
  9. 9.
    S.S.H. Mashkani, S.H.M. Sadat, A.S. Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27, 4351–4355 (2016)Google Scholar
  10. 10.
    T. Mariyam, P.P. Rao, M. Deepa, M.R. Chandran, P. Koshy, Novel powellite-based red-emitting phosphors: CaLa1−xNbMoO8:xEu3+ for white light emitting diodes. J. Solid. State. Chem. 182, 203–207 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer, Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV region. Phys. Status Solidi B. 69, 359–368 (1975)CrossRefGoogle Scholar
  12. 12.
    A.K. Parchur, S.N. Raghumani, B.R. Shyam, S.O. Gunadhor, A.S. Ram, T. Mohit, S.C. Gadkari, T. Raghvendra, K.V. Rajesh, Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans. 40, 7595–7601 (2011)CrossRefGoogle Scholar
  13. 13.
    S.K. Sharma, S. Dutta, S. Som, P.S. Mandal, CaMoO4:Dy3+,K+ near white light emitting phosphor: structural, optical and dielectric properties. J. Mater. Sci. Techn. 29, 633–638 (2013)CrossRefGoogle Scholar
  14. 14.
    K.G. Sharma, N.R. Singh, Synthesis and luminescence properties of CaMO4:Dy3+ (M = W, Mo) nanoparticles prepared via an ethylene glycol route. New J Chem. 37, 2784–2791 (2013)CrossRefGoogle Scholar
  15. 15.
    T.F. Linda, P.P. Rao, T. Mariyam, S.K. Mahesh, V.R. Reshmi, Effect of Zr4+ and Si4+ substitution on the luminescence properties of CaMoO4:Eu3+ red phosphors. J Mater. Sci. Mater. Electron. 25, 2387–2393 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Chao, D. Zou, H. Guo, F. Jie, T. Ying, Luminescence properties of hierarchical CaMoO4 microspheres derived by ionic liquid-assisted process. J. Lumin. 129, 474–477 (2009)CrossRefGoogle Scholar
  17. 17.
    A.A. Ansari, A.K. Parchur, M. Alam, A. Azzeer, Effect of surface coating on optical properties of Eu(3+)-doped CaMoO4 nanoparticles. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 131, 30–36 (2014)CrossRefGoogle Scholar
  18. 18.
    W.Y. Jong, C.J. Choi, D. Kim, Laser-induced synthesis of CaMoO4 nanocolloidal suspension and its optical properties. Mater. Trans. 52, 768–771 (2011)CrossRefGoogle Scholar
  19. 19.
    V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk, Studies of electronic excitations in MgMoO4, CaMoO4 and CdMoO4 crystals using VUV synchrotron radiation. Phys. Stat. Sol. (b) 242, R17–R19 (2011)CrossRefGoogle Scholar
  20. 20.
    A.K.V. Raj, P.P. Rao, T.S. Sreena, S. Sameera, V. James, U.A. Renju, Remarkable changes in the photoluminescent properties of Y2Ce2O7:Eu3+ red phosphors through modification of the cerium oxidation states and oxygen vacancy ordering. Phys. Chem. Chem. Phys. 16, 23699–23710 (2014)CrossRefGoogle Scholar
  21. 21.
    J.H. Ryu, J. Yoon, C.S. Lim, W. Oh, K.B. Shim, Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property. J. Alloys Compd. 390, 245–249 (2005)CrossRefGoogle Scholar
  22. 22.
    J.A. Groenink, C. Hakfoort, G. Blasse, The luminescence of calcium molybdate. Phys. Stat. Sol. A. 54, 329–336 (1979)CrossRefGoogle Scholar
  23. 23.
    G.M. Gurgel, L.X. Lovisa, O.L.A. Conceicao, M.S. Li, E. Longo, C.A. Paskocimas, F.V. Motta, M.R.D. Bomio, Evaluation of morphology and photoluminescent properties of PbMoO4 crystals by ultrasonic amplitude. J. Mater. Sci. 52, 4608–4620 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations