Advertisement

Facile molten salt synthesis, structural, morphological and optical studies of ASiO3: Eu2+, Er3+ (A = Ca, Ba, Sr) perovskites

  • Shambhavi Katyayan
  • Sadhana Agrawal
Article

Abstract

This work reports structural, morphological and optical studies of alkaline earth metasilicates ASiO3: Eu2+, Er3+ (A = Ca, Ba, Sr) perovskites synthesized by the facile molten salt synthesis technique. Using the molten chloride salt, NaCl to create an active reaction medium, the phosphors with doping concentration of Eu2+ and Er3+ ions varying from 0 to 2 at.% were synthesized at sintering temperature of 950 °C. The crystallographic analysis done by PXRD confirms the crystalline nature, homogeneity and phase purity of synthesized perovskites. The FESEM and TEM micrographs show the distinct morphology and uniform grain connectivity of the particles. The FTIR spectroscopy set forth the finger print of the molecular activities of the constituent elements of the synthesized phosphors. The optical studies done by PL spectroscopy show distinct emissions of synthesized phosphors with enhanced quantum yields over a wide spectral region resulting from the hypersensitive transitions 2P3/24I15/2, 4G7/24I15/2, 4G11/24I15/2, 4H9/24I15/2, 2P3/24I11/2 and 4F7/24I15/2 of Er3+ ions and crystal field splitting influenced 4f–5d transitions of Eu2+ ions. These emissions confirm the important characteristic of color tunability of the phosphors. The dipole–dipole interaction between rare earth ions crucially amend the optical behavior of synthesized phosphors giving rise to distinct spectroscopic characteristics and enhanced lumen output of the synthesized ASiO3:Eu2+, Er3+(A = Ca, Ba, Sr) perovskites.

Notes

Acknowledgements

The authors sincerely acknowledge the STIC Kochi University for providing TEM facility.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    A. Ecija, K. Vidal, A. Larranaga, L. Ortega-San-Martin, M.I. Arriortua, Advances in Crystallization Processes, ed. by Y. Mastai. Synthetic methods for perovskite materials: structure and morphology, (IntechOpen, London, 2012), pp. 485–506. ISBN: 978-953-51-0581-7Google Scholar
  2. 2.
    N.F. Atta, A. Galal, E.H. El-Ads, in Perovskite Nanomaterials, ed. by L. Pan. Synthesis, characterization and applications, (IntechOpen, London, 2016), pp. 107–151,  https://doi.org/10.5772/61280 CrossRefGoogle Scholar
  3. 3.
    A.D. Lozano-Gorrín, in Polycrystalline Materials: Theoretical and Practical Aspects, ed. by Z. Zakhariev. Structural characterization of new perovskites, (IntechOpen, London, 2012), pp. 107–124. ISBN: 978-953-307-934-9Google Scholar
  4. 4.
    D. Singh, V. Tanwar, S. Bhagwan, I. Singh, in Advanced Magnetic and Optical Materials, ed. by A. Tiwari, P.K. Iyer, V. Kumar, H. Swart. Recent advancements in luminescent materials and their potential applications, (Wiley, Hoboken, 2016), pp. 317–352. ISBN: 978-1-119-24191-1CrossRefGoogle Scholar
  5. 5.
    L.Z. Zhu, H.Y. Sohn, T.M. Bronson, Flux growth of 2M-wollastonite crystals for the preparation of high aspect ratio particles. Ceram. Int. 40(4), 5973–5982 (May 2014)CrossRefGoogle Scholar
  6. 6.
    D. Singh, S. Sheoran, V. Tanwar, Europium doped silicate phosphors: synthetic and characterization techniques. Adv. Mater. Lett. 8(5), 656–672 (2017)CrossRefGoogle Scholar
  7. 7.
    K.S. Bartwal, H. Ryu, M.G. Brik, I. Sildos, Studies of electron-vibrational interaction and crystal field splitting in 5d states of Eu2+ in CaAl2O4 co-doped with Eu2+ and Er3+. J. Phys. D: Appl. Phys. 42, 24540 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Singh, V. Tanwar, A.P. Simantilke, B. Marí, P.S. Kadyan, I. Singh, Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4: Eu2+, RE3+ (RE3+ = Y, Pr) nanophosphors. J. Mater. Sci.: Mater. Electron. 27(3), 2260–2266 (2016)Google Scholar
  9. 9.
    D. Singh, V. Tanwar, A.P. Simantilke, B. Mari, P.S. Kadyan, I. Singh, Rapid synthesis and photoluminescent characterization of MAl2O4:Eu2+,Dy3+ (M = Ca/Ca + Ba/Ca + Mg) blue nanophosphors for white lighting display applications. Adv. Mater. Lett. 7(1), 47–53 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Yazdani, H.R. Rezaie, H. Ghassai, Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. J. Ceram. Process. Res. 11(3), 348–353 (2010)Google Scholar
  11. 11.
    D. Singh, S. Sheoran, V. Tanwar, S. Bhagwan, Optical characteristics of Eu (III) doped MSiO3 (M = Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications. J. Mater. Sci.: Mater. Electron. 28(4), 3243–3253 (2017)Google Scholar
  12. 12.
    F. Li, Z. Li, X. Wang, M. Zhang, Y. Shen, P. Cai, X. He, Crystal structure and luminescent property of flaky-shaped Sr4Al14O25:Eu2+, Dy3+ phosphor doped with Er3+ ions. J. Alloys Compd. 692, 10 (2017).  https://doi.org/10.1016/j.jallcom.2016.07.195 CrossRefGoogle Scholar
  13. 13.
    T. Kimura, in Advances in Ceramics: Synthesis and Characterization, Processing and Specific Applications, ed. by, C. Sikalidis. Molten salt synthesis of ceramic powders, (InTech open, London, 2011), pp. 75–100. ISBN: 978-953-307-505-1Google Scholar
  14. 14.
    H. Deng, Y. Qiu, S. Yang, General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem. 19(7), 976–982 (2009) ISSN 0959-9428CrossRefGoogle Scholar
  15. 15.
    A. Furubayashi, T. Kimura, Preparation of needlelike Sr0.5Ba0.5Nb2O6 particles using molten SrCl2-BaCl2 salt. J. Ceram. Soc. Jpn. 119(4), 282–284 (2011) ISSN 0914-5400CrossRefGoogle Scholar
  16. 16.
    T.X. Wang, S.Z. Liu, J. Chen, Molten salt synthesis of SrTiO3 nanocrystals using nanocrystalline TiO2 as a precursor. Powder Technol. 205, 289–291 (2011)CrossRefGoogle Scholar
  17. 17.
    J.S. Lee, Molten salt synthesis of YAlO3 powders. Mater. Sci. (Poland) 31(2), 240–245 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.-F. Liu, Y.-N. Lu, M. Xu, L.-F. Zhou, S.-Z. Shi, Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Mater. Chem. Phys. 114, 37–42 (2009)CrossRefGoogle Scholar
  19. 19.
    A.T. Volochko, K.B. Podbolotov, A.A. Zhukova, Preparation of porous ceramic materials based on wollastonite using silicon-containing components. Refract. Ind. Ceram. 52(3), 186–190 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Cui, G. Jia, D. Deng, Y. Hua, S. Zhao, L. Huang, H. Wang, H. Ma, S. Xu, Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M = Ca, Sr,Ba) phosphors for white LED. J. Lumin. 132, 153–160 (2012)CrossRefGoogle Scholar
  21. 21.
    N. Sahu, S. Panigrahi, Mathematical aspects of Rietveld refinement and crystal structure studies on PbTiO3 ceramics. Bull. Mater. Sci. 34(7), 1495–1500 (2011)CrossRefGoogle Scholar
  22. 22.
    A.A. Reddy, A. Goel, D.U. Tulyaganov, M. Sardo, L. Mafra, M.J. Pascual, V.V. Kharton, E.V. Tsipis, V.A. Kolotygin, J.M.F. Ferreira, Thermal and mechanical stability of lanthanide containing glass–ceramic sealants for solid oxide fuel cells. J. Mater. Chem. A 2, 1834 (2014)CrossRefGoogle Scholar
  23. 23.
    J.-H. Zhang, D.J. Clark, A. Weiland, S.S. Stoyko, Y.S. Kim, J.I. Jang, J.A. Aitken, Li2CdGeSe4 and Li2CdSnSe4: biaxial nonlinear optical materials with strong infrared second order responses and laser-induced damage thresholds influenced by photoluminescence. Inorg. Chem. Front. 4, 1472 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Katyayan, S. Agrawal, Synthesis and investigation of structural and optical properties of Eu3+ Doped CaZrO3 phosphor. Mater. Today: Proc. 4(8), 8016–8024 (2017).  https://doi.org/10.1016/j.matpr.2017.07.139 CrossRefGoogle Scholar
  25. 25.
    A. Guo, Y. Xu, Z. Ren, J. Bai, Blue white yellow tunable emission from Ce3+ and Eu2+ Co-doped BaSiO3 phosphors. J. Electrochem. Soc. 158(12), J373–J376 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Katyayan, S. Agrawal, Structural investigation of RE doped CZO perovskites. Opt. Soc. Am. (2016).  https://doi.org/10.1364/PHOTONICS.2016.Th3A.82 CrossRefGoogle Scholar
  27. 27.
    A. Singh, V. Tanwar, A.P. Samantilleke, B. Mari, S. Bhagwan, K.C. Singh, P.S. Kadyan, I. Singh, Synthesis of Sr(1-x-y)Al4O7:Eux2+,Lny3+ (Ln = Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristic. Electron. Mater. Lett. 2017, 1–8, (2017)Google Scholar
  28. 28.
    Z. Chen, J.H. Zhang, S. Chen, M.Y. Lin, C.Q. He, G.D. Xu, M.M. Wang, X.F. Yu, J.Q. Zou, K. Guo, Preparation and luminescence property of Eu2+, Mn2+ co-doped silicates phosphors for white LED. J. Alloys Compd. 632, 756–759 (2016)CrossRefGoogle Scholar
  29. 29.
    National Institute of Standard and Technology (NIST) X –ray transition energy database. https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html
  30. 30.
    M.A. Salim, R. Hussain, M.S. Abdullah, S. Abdullah, N.S. Alias, The local structure of phosphor material, Sr2MgSi2O7 and Sr2MgSi2O7:Eu2+ by infrared spectroscopy. Solid State Sci. Technol. 17, 59–64 (2009)Google Scholar
  31. 31.
    X.M. Han, J. Lin, M. Yu, C.K. Lin, X.W. Qi, Z.Y. Yu, X.Q. Wang, Luminescence properties of spherical phosphors SrSiO3:Eu3+. Key Eng. Mater. 336–338, 619–621 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Katyayan, S. Agrawal, Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-7791-8 CrossRefGoogle Scholar
  33. 33.
    E.S. Sazali, M.S. Rohani, M.R. Sahar, R. Arifin, S.K. Ghoshal, K. Hamzah, Erbium concentration dependent absorbance in tellurite glass. AIP Conf. Proc. 1617, 134 (2014).  https://doi.org/10.1063/1.4897122 CrossRefGoogle Scholar
  34. 34.
    N.A.M. Adnan, M.R. Sahar, M.S. Rohani, Optical absorption in erbium doped phosphate glass embedded with cobalt nanoparticles. Adv. Mater. Res. 1107, 409–414 (2015) ISSN: 1662–8985CrossRefGoogle Scholar
  35. 35.
    S. Kang, X. Xiao, Q. Pan, D. Chen, J. Qiu, G. Dong, Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials. Sci. Rep. 7, 43186 (2017).  https://doi.org/10.1038/srep43186 CrossRefGoogle Scholar
  36. 36.
    Y.X. Pan, G.K. Liu, Enhancement of Eu2+ Luminescence in BaO–SiO2 compounds through composition modification. Spectrosc. Lett. 44, 1–7 (2011)CrossRefGoogle Scholar
  37. 37.
    J.S. Kim, Y.H. Park, S.M. Kim, J.C. Choi, H.L. Park, Temperature-dependent emission spectra of M2SiO4:Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun. 133, 445 (2005)CrossRefGoogle Scholar
  38. 38.
    Y. Jia, W. Sun, R. Pang, T. Ma, D. Li, H. Li, S. Zhang, J. Fu, L. Jiang, C. Li, Sunlight activated new long persistent luminescence phosphor BaSiO3:Eu2+,Nd3+,Tm3+. Opt. Prop. Mech. (2016).  https://doi.org/10.1016/j.matdes.2015.10.130 CrossRefGoogle Scholar
  39. 39.
    J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, Emission color variation of M2SiO4:Eu2+ (M = Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Commun. 133, 18 (2005)Google Scholar
  40. 40.
    I.S. Cho, D.K. Yim, C.H. Kwak, J.S. An, H.S. Roh, K.S. Hong, Investigation of crystal/ electronic structure effects on the photoluminescence properties in the BaO–SiO2:Eu2+ systems. J. Lumin. 132, 375–380 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Xu, Y. Zhao, J. Chen, Z. Mao, Y. Yang, D. Wang, Insights into the discrepant luminescence for BaSiO3:Eu2+ phosphors prepared by solid-state reaction and precipitation reaction methods. Luminescence (2017).  https://doi.org/10.1002/bio.3277 CrossRefGoogle Scholar
  42. 42.
    S.M. Lima, L.H. da Cunha Andrade, J.R. Silva, A.C. Bento, M.L. Baesso, J.A. Sampaio, L.A. de Oliveira Nunes, Y. Guyot, G. Boulon, Broad combined orange-red emissions from Eu2+- and Eu3+-doped low-silica calcium aluminosilicate glass. Opt. Express 20(12), 12658 (2012)CrossRefGoogle Scholar
  43. 43.
    A. Singh, V. Tanwar, A. Simantilke, P.S. Kadyan, I. Singh, Luminescent characterization of Eu2+ doped BaMAl10O17 (M = Ca/Mg or both) blue nanophosphors for white light emitting applications. J. Mater. Sci.: Mater. Electron. 26(12), 9977–9984 (2015)Google Scholar
  44. 44.
    H. Wu, Y. Hu, L. Chen, X. Wang, Enhancement on the afterglow properties of Sr2MgSi2O7: Eu2+ by Er2+ codoping. Mater. Lett. 65, 2676–2679 (2011)CrossRefGoogle Scholar
  45. 45.
    B. Singh, V. Tanwar, A.P. Samantilleke, B. Mari, S. Bhagwan, P.S. Kadyan, I. Singh, Preparation and photoluminescence properties of SrAl2O4:Eu2+,RE3+ green nanophosphors for display device applications. J. Electron. Mater. 45(6), 2718–2724 (2016)CrossRefGoogle Scholar
  46. 46.
    B. Singh, V. Tanwar, A.P. Simantilleke, S. Bhagwan, B. Mari, P.S. Kadyan, K.C. Singh, I. Singh, Synthesis and enhanced luminescent characterization of SrAl4O7:Eu2+,RE3+ (RE = Nd, Dy) nanophosphors for light emitting applications. J. Mater. Sci.: Mater. Electron. 27(5), 5303–5308 (2016)Google Scholar
  47. 47.
    Y. Cai, F. Li, S. Chang, M. Zhang, Z. Liu, Y. Shen, Er3+ co-doped Sr1.956 Mg Si2O7:0.004Eu2+, 0.04Dy3+ phosphors and enhancement of luminescent properties. J. Mater. Sci.: Mater. Electron. 29, 9239–9244 (2018)Google Scholar
  48. 48.
    S. Ye, C.-H. Wang, X.-P. Jing, Photoluminescence and Raman spectra of double-perovskite Sr2Ca (Mo/W) O6 with A-and B-Site Substitutions of Eu3+. J. Electrochem. Soc. 155(6), J148–J151 (2008)CrossRefGoogle Scholar
  49. 49.
    R.F. Gonçalves, A.P. Moura, M.J. Godinho, E. Longo, M.A.C. Machado, D.A. de Castro, M.S. Li, A.P.A. Marques, Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 41, 3549–3554 (2015)CrossRefGoogle Scholar
  50. 50.
    Z. Chen, J.H. Zhang, S. Chen, M.Y. Lin, C.Q. He, G.D. Xu, M.M. Wang, X.F. Yu, J.Q. Zou, K. Guo, Preparation and luminescence property of Eu2+, Mn2+ codoped silicates phosphors for white LED. J. Alloys Compd. 682, 756–759 (2015)CrossRefGoogle Scholar
  51. 51.
    N. Lakshminarasimhan, U.V. Varadaraju, Luminescence and afterglow in Sr2SiO4: Eu2+, RE3+ [RE = Ce, Nd, Sm and Dy] phosphors- role of co-dopants in search for afterglow. Mater. Res. Bull. 43, 2946–2953 (2008)CrossRefGoogle Scholar
  52. 52.
    Z. Pan, A. Ueda, R. Mu, S.H. Morgan, Up conversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics. J. Lumin. 126, 251–256 (2007)CrossRefGoogle Scholar
  53. 53.
    S. Katyayan, S. Agrawal, Dynamics of concentration quenching in Eu3+ and Tb3+ doped calcium dioxide-oxo-zirconium perovskite. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-017-8156-z CrossRefGoogle Scholar
  54. 54.
    L. Yang, M. Fang, L. Du, Z. Zhang, L. Ren, X. Yu, Synthesis and photoluminescence properties of CaSiO3:Eu3+ spheres prepared by the reverse micelles soft template. Mater. Res. Bull. 43, 2538–2543 (2008)CrossRefGoogle Scholar
  55. 55.
    S. Katyayan, S. Agrawal, Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites. Methods Appl. Fluoresc. (2018).  https://doi.org/10.1088/2050-6120/aaae0b CrossRefGoogle Scholar
  56. 56.
    A. Barthou, P. Benalloul, B.B. Tagiev, O.G. Tagiev, S. Abushov, F.A. Kazimova, A.N. Georgobiani, Energy transfers between Eu2+ and Er3+ in EuGa2S4:Er3+. J. Phys.: Condens. Matter. 16, 8075–8084 (2004)Google Scholar
  57. 57.
    P. Wang, X. Xu, J. Qiu, X. Yu, Q. Wang, Effects of Er3+ doping on the long-persistent luminescence properties of Ba4(Si3O8)2:Eu2+ phosphor. Opt. Mater. 36, 1826–1829 (2014)CrossRefGoogle Scholar
  58. 58.
    H. Wang, X. Yin, M. Xing, Y. Fu, Y. Tian, X. Feng, T. Jiang, X. Luo, K3LaTe2O9:Er: a novel green up-conversion luminescence material. RSC Adv. 7, 36374 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RaipurRaipurIndia

Personalised recommendations